精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,C是⊙O上的点,连接AC、CB,过O作EO∥CB并延长EO到F,使EO=FO,连接AF并延长AF与CB的延长线交于D.
求证:AE2=FG•FD.
分析:如图,连结BF、BG.由△AEO≌△BFO的对应边相等得到AE=BF,然后由圆周角定理和平行线的性质易证△FGB∽△FBD,则根据该相似三角形的对应边成比例证得结论.
解答: 证明:连结BF、BG.
∵在△AEO和△BFO中,
∠AEO=∠BFO
∠AOE=∠BOF
AO=BO

∴△AEO≌△BFO(AAS),
∴AE=BF.
又∵∠ACB=90°,EF∥BC,
∴∠OFB=∠AEO=∠ACB=90°,
∴∠FBD=90°,
又∵BG⊥FD,
∴△FGB∽△FBD,
BF
DF
=
FG
FB
,即
AE
FD
=
FG
AE

∴AE2=FG•FD.
点评:本题综合考查了相似三角形的判定与性质、全等三角形的判定与性质以及圆周角定理.此题利用“两角法”证得两个三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案