精英家教网 > 初中数学 > 题目详情
2.图是一个长、宽、高分别为4cm,3cm,5cm的长方体,一只蚂蚁从顶点A出发,沿长方体的表面爬行至点B,爬行的最短路程是多少?

分析 把此长方体的一面展开,在平面内,两点之间线段最短.利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.

解答 解:因为平面展开图不唯一,
故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.
(1)展开前面、右面,由勾股定理得AB2=(5+4)2+32=90;
(2)展开前面、上面,由勾股定理得AB2=(3+4)2+52=74;
(3)展开左面、上面,由勾股定理得AB2=(3+5)2+42=80;
所以最短路径长为$\sqrt{74}$cm.

点评 此题是平面展开图--最短路径问题,主要考查了勾股定理的应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.分解因式:ax2-2a2x+a3=a(x-a)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知正方形ABCD的边长为6,点P从点B出发,以每秒1个单位长度的速度沿BC边运动,点Q从C点同时出发,以相同的速度在BC的延长线上运动,当点P运动到点C时,点Q也停止运动,连接AP,过P点作AP的垂线,与过点Q垂直于BC的直线m相交于点E,连接AE交CD于点F设点P的运动时间为t秒(t>0)
(1)∠PAE的度数为45°,EQ=t(用t表示);
(2)△PCF的周长会随着t的变化而变化吗?若变化说明理由,若不变求出定值;
(3)当△PAF为等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直线y=2x与双曲线y=$\frac{k}{x}$交于点A(m,2).
(1)求k的值;
(2)将直线y=2x向下平移交y轴于B,交双曲线于P,△AOP的面积为2,求直线PB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知在△ABC中,∠ACB=90°,AC=BC,P为AB上一个动点,连接CP,在CP顺时针的方向,以PC为斜边作△PCE,PE=CE,∠PEC=90°,连接AE.
(1)如图①,当∠BCP=22.5°时,求证:AE平分∠BAC;
(2)如图②,延长AE交BC的延长线于点D,求证:AE=DE;
(3)在(2)的条件下,连接BE,交AC于点O,若BE平分∠ABC,AC=($\sqrt{2}$+1)CD,求$\frac{OE}{CE}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知抛物线y=x2+h与x轴交于A、B两点,与y轴交于C点,且OC=AB.
(1)求此抛物线的解析式;
(2)直线y=2x+b被抛物线截得线段长为2$\sqrt{30}$,求b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.定义:两组邻边财应相等的四边形为筝形
如图,在筝形ABCD中,AB=AD=2$\sqrt{2}$,BC=CD=6,∠DAB=90°
(1)在图1中,作一条直线将筝形ABCD的面积二等分,并说明理由.
(2)在图2中,利用尺规在筝形ABCD中找一点P,连接PB、PD,使折线BPD将筝形ABCD的面积二等分(不写作法).并说明理由.
(3)在筝形ABCD中,是否存在一条过点D的直线将筝形ABCD的面积二等分?若存在,求出该筝形截这条直线所得线段的长的平方;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,双曲线y1=$\frac{{k}_{1}}{x}$(x<0)经过A(-2,3),双曲线y2=$\frac{{k}_{2}}{x}$(x2>0)经过C点,D点在y轴正半轴上,B(1,0)点在x轴的正半轴上,若四边形ABCD是矩形.
(1)求双曲线y1(x<0)的解析式;
(2)双曲线y2(x>0)解析式.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年湖北省武汉市侏儒山街四校七年级3月月考数学试卷(解析版) 题型:判断题

阅读理【解析】
计算时我们可以将式子中的分别看成两个相同的字母a、b;则原式可看成a+b+2a﹣3b,我们用类比合并同类项的方法可将上面的式子化简.

【解析】

=(1+2)+(1-3)

=3﹣2

类比以上解答方式化简: |

查看答案和解析>>

同步练习册答案