精英家教网 > 初中数学 > 题目详情
学习数学应该积极地参加到现实的、探索性的数学活动中去,努力地成为学习的主人.如图,请你探究:随着D点位置的变化,∠BDC与∠A的大小关系.(①、②问用“>”表示其关系,③、④、⑤问用“=”表示其关系)

(1)如图①,点D在AC上(不同于A、C两点),∠BDC与∠A的关系是
∠BDC>∠A
∠BDC>∠A

如图②,点D在△ABC内部,∠BDC与∠A的关系是
∠BDC>∠A
∠BDC>∠A

如图③,点D是∠ABC,∠ACB平分线的交点,此时∠BDC与∠A的关系是
∠BDC=90°-
1
2
∠A
∠BDC=90°-
1
2
∠A

如图④,点D是∠ABC的平分线和∠ACB外角平分线的交点,∠BDC与∠A的关系是
∠D=
1
2
∠A
∠D=
1
2
∠A

如图⑤,点D是∠ABC与∠ACB两外角平分线的交点,∠BDC与∠A的关系是
∠BDC=90°-
1
2
∠A
∠BDC=90°-
1
2
∠A

(2)证明图④的结论;
(3)证明图⑤的结论.
分析:(1)①②根据三角形的一个外角大于任何一个与它不相邻的内角解答;
③先根据三角形的内角和定理用∠A表示出∠ABC+∠ACB,再根据角平分线的定义表示出∠DBC+∠DCB,然后根据三角形的内角和定理列式整理即可得解;
④根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义两次表示出∠1,然后列式整理即可得解;
⑤根据三角形的一个外角等于与它不相邻的两个内角的和列式以及角平分线的定义表示出∠1、∠2,然后根据三角形的内角和定理列式整理即可得解.
解答:解:(1)①∠BDC>∠A;

②∠BDC>∠A;

③在△ABC中,∠ABC+∠ACB=180°-∠A,
∵点D是∠ABC,∠ACB平分线的交点,
∴∠DBC=
1
2
∠ABC,∠DCB=
1
2
∠ACB,
∴∠DBC+∠DCB=
1
2
(∠ABC+∠ACB)=90°-
1
2
∠A,
在△BDC中,∠BDC=180°-(∠DBC+∠DCB)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A,
即,∠BDC=90°+
1
2
∠A;

④∵CD是△ABC的外角平分线,
∴∠1=
1
2
(∠A+∠ABC)=
1
2
∠A+
1
2
∠ABC,
∠1=∠D+∠DBC,
1
2
∠A+
1
2
∠ABC=∠D+∠DBC,
∵BD平分∠ABC,
∴∠DBC=
1
2
∠ABC,
∠D=
1
2
∠A;

⑤∵点D是∠ABC与∠ACB两外角平分线的交点,
∴∠1=
1
2
(∠A+∠ACB),∠2=
1
2
(∠A+∠ABC),
∴∠1+∠2=
1
2
(∠A+∠ACB)+
1
2
(∠A+∠ABC)=∠A+
1
2
(∠ACB+∠ABC),
在△ABC中,∠ACB+∠ABC=180°-∠A,
∴∠1+∠2=∠A+
1
2
(180°-∠A)=90°+
1
2
∠A,
在△BCD中,∠BDC=180°-(∠1+∠2)=180°-(90°+
1
2
∠A)=90°-
1
2
∠A,
即∠BDC=90°-
1
2
∠A.
故答案为:①∠BDC>∠A;②∠BDC>∠A;③∠BDC=90°-
1
2
∠A;④∠D=
1
2
∠A;⑤∠BDC=90°-
1
2
∠A.
点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并准确识图是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

学习数学应该积极地参加到现实的、探索性的数学活动中去,努力地成为学习的主人.如图,请你探究:随着D点位置的变化,∠BDC与∠A的大小关系.(①、②问用“>”表示其关系,③、④、⑤问用“=”表示其关系)
精英家教网
(1)如图①,点D在AC上(不同于A、C两点),∠BDC与∠A的关系是
 

(2)如图②,点D在△ABC内部,∠BDC与∠A的关系是
 

(3)如图③,点D是∠ABC,∠ACB平分线的交点,此时∠BDC与∠A的关系是
 

(4)如图④,点D是∠ABC的平分线和∠ACB外角平分线的交点,∠BDC与∠A的关系是
 

(5)如图⑤,点D是∠ABC与∠ACB两外角平分线的交点,∠BDC与∠A的关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

学习数学应该积极地参加到现实的、探索的数学活动中去,努力地成为学习的主人.下面,请你探究:随着P点位置的变化,∠BPC与∠A的大小关系.(1)、(2)问用“>”表示其关系,(3)、(4)、(5)用“=”表示其关系.
1如图(1),点P在AC上(不同于A、C两点),∠BPC与∠A的关系是
 
,用一句话说出你判断的依据
 

②如图(2),点P在△ABC内部,∠BPC与∠A的关系是
 

③如图(3),点P是∠ABC、∠ACB平分线的交点,此时∠BPC与∠A的关系是
 

④如图(4),点P是∠ABC平分线和∠ACB外角平分线的交点,∠BPC与∠A的关系是
 

⑤如图(5),点P是∠ABC与∠ACB两外角平分线的交点,∠BPC与∠A的关系是
 

⑥在上述五种情形中,选择其中一种情形给予说明理由.
⑦问题解决:
如图(6),在△ABC中,∠C=90°,点P是∠ABC平分线和∠BAC外角平分线的交点,则∠P的度数为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

学习数学应该积极地参加到现实的、探索的数学活动中去,努力地成为学习的主人.下面,请你探究:随着P点位置的变化,∠BPC与∠A的大小关系.(1)、(2)问用“>”表示其关系,(3)、(4)、(5)用“=”表示其关系.
1如图(1),点P在AC上(不同于A、C两点),∠BPC与∠A的关系是________,用一句话说出你判断的依据________;
②如图(2),点P在△ABC内部,∠BPC与∠A的关系是________;
③如图(3),点P是∠ABC、∠ACB平分线的交点,此时∠BPC与∠A的关系是________;
④如图(4),点P是∠ABC平分线和∠ACB外角平分线的交点,∠BPC与∠A的关系是________;
⑤如图(5),点P是∠ABC与∠ACB两外角平分线的交点,∠BPC与∠A的关系是________;
⑥在上述五种情形中,选择其中一种情形给予说明理由.
⑦问题解决:
如图(6),在△ABC中,∠C=90°,点P是∠ABC平分线和∠BAC外角平分线的交点,则∠P的度数为________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

学习数学应该积极地参加到现实的、探索性的数学活动中去,努力地成为学习的主人.如图,请你探究:随着D点位置的变化,∠BDC与∠A的大小关系.(①、②问用“>”表示其关系,③、④、⑤问用“=”表示其关系)

(1)如图①,点D在AC上(不同于A、C两点),∠BDC与∠A的关系是______;
(2)如图②,点D在△ABC内部,∠BDC与∠A的关系是______;
(3)如图③,点D是∠ABC,∠ACB平分线的交点,此时∠BDC与∠A的关系是______;
(4)如图④,点D是∠ABC的平分线和∠ACB外角平分线的交点,∠BDC与∠A的关系是______;
(5)如图⑤,点D是∠ABC与∠ACB两外角平分线的交点,∠BDC与∠A的关系是______.

查看答案和解析>>

同步练习册答案