精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长为4,E为BC上任意一点,EF⊥AC于F,EG⊥BD于G,则EF+EG的值为________.


分析:根据条件可以得到四边形GEOF是矩形,因而EG=OF,同时易证△FCE是等腰直角三角形,因而FE=FC,则FE+OF=OA.根据勾股定理即可求解.
解答:∵四边形ABCD是正方形,边长为4,
∴AD=CD=4 AC⊥BD∠DAO=45°;
∴AC2=AD2+CD2=42+42=32,则AC=4
∵EF⊥AC,GE⊥BD,
∴∠OGE=∠OFE=90°;
又∵AC⊥BD,
∴四边形OGEF是矩形;
∴EG=OF,
又∵∠DAO=∠FCE=45°,
∴EF=CF;
∵OF+CF=OC=AC×4=2
∴GE+EF=2
故答案为2
点评:本题主要利用三角形相似将所求的线段表示出来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案