15£®Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¾ØÐÎOABCµÄÁ½±ßÔÚ×ø±êÖáÉÏ£¬µãBµÄ×ø±êΪ£¨10£¬3£©£¬µãDΪOAµÄÖеã¹ýDµÄÖ±Ïßl£ºy=kx+b£¨k¡Ù0£©£®
£¨1£©ÈôÖ±ÏßlͬʱҲ¹ýCµã£¬ÇëÇó³öÖ±ÏßlµÄ½âÎöʽ£»
£¨2£©ÈôÖ±ÏßlÓëÏß¶ÎOC½»ÓÚµãE£¬ÇÒDE·Ö¡÷DCOµÄÃæ»ý±ÈΪ1£º2£¬Çó³ö´ËʱlµÄ½âÎöʽ£»
£¨3£©Èçͼ2£¬ÈôÖ±ÏßlÓëÏß¶ÎCB½»ÓÚµãF£¬ÊÇ·ñ´æÔÚÕâÑùµÄµãF£¬Ê¹¡÷ODFΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öÂú×ãÌõ¼þµÄËùÓÐkÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÐÔÖʵõ½µãA¡¢CµÄ×ø±ê£¬È»ºóÓÉÖеãµÄÐÔÖÊÇóµÃµãDµÄ×ø±ê£¬½«C¡¢DÁ½µãµÄ×ø±ê·Ö±ð´úÈëÖ±Ïßl£ºy=kx+b£¨k¡Ù0£©½èÖúÓÚ·½³Ì×éÇóµÃϵÊýµÄÖµ£»
£¨2£©ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½ÍÆÖªµãEµÄ×ø±ê£¬½«µãE¡¢DµÄ×ø±ê·Ö±ð´úÈëÖ±Ïßl£ºy=kx+b£¨k¡Ù0£©½èÖúÓÚ·½³Ì×éÇóµÃϵÊýµÄÖµ£®ÐèÒª·ÖÀàÌÖÂÛ£ºS¡÷DEO£ºS¡÷DEC=1£º2ºÍS¡÷DEC£ºS¡÷DEO=1£º2Á½ÖÖÇé¿ö£»
£¨3£©ÐèÒª·ÖÀàÌÖÂÛ£º·ÖOF=DF£¬OD=OF£¬OD=DFÈýÖÖÇé¿öϵÄkµÄÖµ£®

½â´ð ½â£º£¨1£©Èçͼ1£¬¡ß¾ØÐÎOABCµÄÁ½±ßÔÚ×ø±êÖáÉÏ£¬µãBµÄ×ø±êΪ£¨10£¬3£©£¬
¡àA£¨10£¬0£©£¬C£¨0£¬3£©£®
ÓÖ¡ßµãDΪOAµÄÖе㣬
¡àD£¨5£¬0£©£®
°ÑC£¨0£¬3£©¡¢D£¨5£¬0£©·Ö±ð´úÈëy=kx+b£¨k¡Ù0£©£¬µÃ
$\left\{\begin{array}{l}{3=b}\\{0=5k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{3}{5}}\\{b=3}\end{array}\right.$£¬
ÔòÖ±ÏßlµÄ½âÎöʽµÄ½âÎöʽΪ£ºy=-$\frac{3}{5}$x+3£»

£¨2£©¢Ùµ±S¡÷DEO£ºS¡÷DEC=1£º2ʱ£¬OE£ºEC=1£º2£¬´ËʱE£¨0£¬1£©£¬
°ÑE£¨0£¬1£©£¬D£¨5£¬0£©·Ö±ð´úÈëy=kx+b£¨k¡Ù0£©£¬µÃ
$\left\{\begin{array}{l}{1=b}\\{0=5k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{1}{5}}\\{b=1}\end{array}\right.$£¬
ÔòÖ±ÏßlµÄ½âÎöʽµÄ½âÎöʽΪ£ºy=-$\frac{1}{5}$x+1£»
¢Úµ±S¡÷DEC£ºS¡÷DEO=1£º2ʱ£¬OE£ºEC=2£º1£¬´ËʱE£¨0£¬2£©£¬
°ÑE£¨0£¬2£©£¬D£¨5£¬0£©·Ö±ð´úÈëy=kx+b£¨k¡Ù0£©£¬µÃ
$\left\{\begin{array}{l}{2=b}\\{0=5k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{2}{5}}\\{b=2}\end{array}\right.$£¬
ÔòÖ±ÏßlµÄ½âÎöʽµÄ½âÎöʽΪ£ºy=-$\frac{2}{5}$x+2£»
×ÛÉÏËùÊö£¬Ö±ÏßlµÄ½âÎöʽµÄ½âÎöʽΪ£ºy=-$\frac{1}{5}$x+1»òy=-$\frac{2}{5}$x+2£»

£¨3£©Èçͼ2£¬
¢Ùµ±OF=DFʱ£¬µãFÔÚÏß¶ÎODµÄÖд¹ÏßÉÏ£¬´ËʱF£¨2.5£¬3£©£®
°ÑD£¨5£¬0£©¡¢F£¨2.5£¬3£©·Ö±ð´úÈëy=kx+b£¨k¡Ù0£©£¬µÃ
$\left\{\begin{array}{l}{0=5k+b}\\{3=2.5k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{6}{5}}\\ b=\frac{6}{25}}\end{array}\right.$£»
¢Úµ±OD=OF=5ʱ£¬¸ù¾Ý¹´¹É¶¨ÀíÒ×µÃCF=4£¬ÔòF£¨4£¬3£©£®
°ÑD£¨5£¬0£©¡¢F£¨4£¬3£©·Ö±ð´úÈëy=kx+b£¨k¡Ù0£©£¬µÃ
$\left\{\begin{array}{l}{0=5k+b}\\{3=4k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-{3}}\\ b={15}}\end{array}\right.$£»
¢Ûµ±OD=DF=5ʱ£¬¸ù¾Ý¹´¹É¶¨ÀíÒ×µÃF£¨1£¬3£©£®
°ÑD£¨5£¬0£©¡¢F£¨1£¬3£©·Ö±ð´úÈëy=kx+b£¨k¡Ù0£©£¬µÃ
$\left\{\begin{array}{l}{0=5k+b}\\{3=k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{3}{4}}\\{b=\frac{15}{4}}\end{array}\right.$£»
×ÛÉÏËùÊö£¬kµÄÖµÊÇ-$\frac{6}{5}$»ò-3»ò-$\frac{3}{4}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˾ØÐεÄÐÔÖÊ£¬µÈÑüÈý½ÇÐεÄÐÔÖÊÒÔ¼°Ò»´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð¹ØÓÚ¶¯µãÎÊÌâʱ£¬Òª¶Ô¶¯µãËù´¦µÄ²»Í¬Î»ÖýøÐзÖÀàÌÖÂÛ£¬ÒÔ·À©½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®½«Õý·½Ìå÷»×Ó£¨Ïà¶ÔÃæÉϵĵãÊý·Ö±ðΪ1ºÍ6¡¢2ºÍ5¡¢3ºÍ4£©·ÅÖÃÓÚˮƽ×ÀÃæÉÏ£¬Èçͼ1£®ÔÚͼ2ÖУ¬½«÷»×ÓÏòÓÒ·­¹ö90¶È£¬È»ºóÔÚ×ÀÃæÉϰ´ÄæÊ±Õë·½ÏòÐýת90¶È£¬ÔòÍê³ÉÒ»´Î±ä»»£®Èô÷»×ӵijõʼλÖÃΪͼ1ËùʾµÄ״̬£¬ÄÇô°´ÉÏÊö¹æÔòÁ¬ÐøÍê³É32´Î±ä»»ºó£¬÷»×Ó³¯ÉÏÒ»ÃæµÄµãÊýÊÇ£¨¡¡¡¡£©
A£®6B£®5C£®3D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÔ²ÖùµÄÈ«Ãæ»ýΪ600¦Ðcm2£¬Ä¸Ïß³¤Îª20cm£®
£¨1£©ÇóËüµÄµ×Ãæ°ë¾¶£»
£¨2£©»­³öËüµÄ±íÃæÕ¹¿ªÍ¼£®£¨°´1£º10µÄ±ÈÀý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬ºÓµÌºá¶ÏÃæÓ­Ë®ÆÂABµÄÆÆ±ÚÊÇ$1£º\sqrt{3}$£¬µÌ¸ßBC=12cm£¬ÔòÆÂÃæABµÄ³¤¶ÈÊÇ£¨¡¡¡¡£©
A£®15cmB£®$20\sqrt{3}$cmC£®24cmD£®$10\sqrt{3}$cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼËùʾ£¬ÒÑÖª0Bƽ·Ö¡ÏAOC£¬ODƽ·Ö¡ÏBOE£¬¡ÏBOE=90¡ã£¬¡ÏBOC=2¡ÏCOD£¬Çó¡ÏA0EµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬µãA×ø±êΪ£¨-2£¬3£©£¬½«µãAÈÆÔ­µãO˳ʱÕëÐýת90¡ãµÃµãA¡ä£¬ÇóA¡äµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò»ò½â·½³Ì£º
£¨1£©$\sqrt{48}$-£¨$\frac{\sqrt{3}}{3}$£©-1+$\sqrt{3}$£¨$\sqrt{3}$-1£©-30-|$\sqrt{3}$-2|
£¨2£©6x2+7x+2=0
£¨3£©£¨x-2£©2-5£¨x-2£©+6=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚÕý·½ÐÎÍø¸ñÖУ¬Ã¿¸öСÕý·½Ðεı߳¤Îª1£¬¸ñµã¡÷ABCµÄ¶¥µãA¡¢CµÄ×ø±ê·Ö±ðΪ£¨-4£¬5£©¡¢£¨-1£¬3£©
£¨1£©ÇëÔÚͼÖÐÕýÈ·×÷³öÆ½ÃæÖ±½Ç×ø±êϵ£»
£¨2£©Çë×÷³ö¡÷ABC¹ØÓÚ¹ØÓÚyÖá¶Ô³ÆµÄ¡÷A¡äB¡äC¡ä£»
£¨3£©µãB¡äµÄ×ø±êΪ£¨2£¬1£©£»
£¨4£©µãPÔÚxÖáÉÏÔ˶¯£¬µ±µãPµ½A¡¢CÁ½µã¾àÀëÖ®²îµÄ¾ø¶ÔÖµ×î´óʱ£¬PµÄ×ø±êÊÇ£¨$\frac{7}{2}$£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®£¨1£©½â·½³Ì£º2x2-4x-1=0£®
£¨2£©½â·½³Ì£º3x£¨x-2£©=2£¨2-x£© 
£¨3£©sin30¡ã+cos245¡ã-$\frac{1}{3}$tan260¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸