精英家教网 > 初中数学 > 题目详情
3.如图,CD与BE互相垂直平分,AD⊥DB,交BE延长线于点A,连接AC,已知∠BDE=70°,则∠CAD=70°.

分析 先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可

解答 解:∵CD与BE互相垂直平分,
∴四边形BDEC是菱形,
∴DB=DE,
∵∠BDE=70°,
∴∠ABD=$\frac{180°-70°}{2}$=55°,
∵AD⊥DB,
∴∠BAD=90°-55°=35°,
根据轴对称性,四边形ACBD关于直线AB成轴对称,
∴∠BAC=∠BAD=35°,
∴∠CAD=∠BAC+∠BAD=35°+35°=70°.
故答案为:70°.

点评 本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.先化简,再求值:已知A=4a2+5b,B=-3a2-2b,求-2(A+B)+(B+3A)+A的值,其中a=-2,b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某公司销售一种成本单价为50元/件的产品,经调查发现每天的销售量y(件)与销售单价x(元/件)的关系为一次函数y=-x+100
(1)设每天的销售利润为W元,求出利润W(元)与销售单价x(元/件)的函数关系式;(不要求写自变量取值范围)
(2)该公司要想每天获得最大的利润,应把销售单价定为多少元?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在△ABO中,BA=BO,OA=3,OA在y轴的正半轴上,若点B在直线y=-$\frac{1}{2}$x+1上,△ABO的面积是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在直角坐标系中,长方形ABCD的边AB可表示成(2,y)(-1≤y≤3),边BC可表示成(x,3)(2≤x≤5),则点D的坐标是(  )
A.(5,3)B.(5,-1)C.(-1,2)D.(2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如果把分式$\frac{{x}^{2}y}{x+y}$中x、y的值都扩大到原来的两倍,那么分式$\frac{{x}^{2}y}{x+y}$的值扩大到原来的(  )倍.
A.8B.4C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:
①这种调查方式是抽样调查;
②6000名学生是总体;
③每名学生的数学成绩是个体;
④500名学生是总体的一个样本.
其中正确的判断有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如表列出了皮球反弹高度和下落高度的数据,其中d表示皮球的下落高度,h表示皮球落地后的反弹高度(单位:cm)
d5080100150
h25405075
(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是函数?
(2)当下落高度是100cm时,皮球的反弹高度是多少?
(2)预测下落高度是90cm时,皮球的反弹高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.直线y=kx+b过点A(-6,0),且与y轴交于点B,直线与两坐标轴围成的三角形的面积为12,求直线的函数表达式.

查看答案和解析>>

同步练习册答案