如图,矩形A1B1C1D1的面积为4,顺次连结各边中点得到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依此类推,求四边形AnBnCnDn的面积是 .
![]()
![]()
【解析】:∵四边形A1B1C1D1是矩形,
∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;
又∵各边中点是A2、B2、C2、D2,
∴四边形A2B2C2D2的面积=S△A1A2D2+S△C1D1D2+S△C1B2C2+S△B1B2A2
=
•
A1D1•
A1B1×4
=
矩形A1B1C1D1的面积,即四边形A2B2C2D2的面积=
矩形A1B1C1D1的面积;
同理,得
四边形A3B3C3D3=
四边形A2B2C2D2的面积=
矩形A1B1C1D1的面积;
以此类推,四边形AnBnCnDn的面积=
矩形A1B1C1D1的面积=
.
故答案是:![]()
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com