精英家教网 > 初中数学 > 题目详情
(2013•鄂尔多斯)如图,△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:PC是⊙O的切线;
(2)若∠PAC=60°,直径AC=4
3
,求图中阴影部分的面积.
分析:(1)首先连接AN,由以AC为直径的⊙O,可得∠ANC=90°,又由AB=AC,AN⊥BC,可求得∠CAN=∠BCP,继而证得∠ACP=90°,即可判定PC是⊙O的切线;
(2)连接ON,由AB=AC,∠BAC=60°,可得△ABC是等边三角形,然后分别求得△OCN与扇形CON的面积,即可求得答案.
解答:(1)证明:连接AN,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠NAC+∠NCA=90°,
∵AB=AC,AN⊥BC,
∴∠BAN=∠CAN,
∵∠CAB=2∠BCP,
∴2∠CAN=2∠BCP,
∴∠CAN=∠BCP,
∴∠BCP+∠ACB=90°,
即∠ACP=90°,
∴AC⊥PC,
∴PC是⊙O的切线;                               

(2)连接ON,
∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形,
∴∠ACB=60°,
∵ON=OC,
∴△ONC是等边三角形,
∴∠NOC=60°,
∴OC=NC=
1
2
AC=
1
2
×4
3
=2 
3

过点O作OE⊥NC于E,
∵sin∠ACB=
OE
OC

∴sin60°=
OE
2
3

∴OE=2
3
×
3
2
=3,
∵S△ONC=
1
2
NC•OE=
1
2
×2
3
×3=3
3
,S扇形=
60π×(2
3
)2
360
=2π,
∴S阴影=S扇形-S△ONC=2π-3
3
点评:此题考查了切线的判定、扇形的面积以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)若“神舟十号”发射点火前15秒记为-15秒,那么发射点火后10秒应记为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型(如图所示)摆出相同姿势,才能穿墙而过,否则会被推入水池.若墙上的三个空洞恰是某个几何体的三视图,则该几何体为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)2013年,鄂尔多斯市计划新建、改扩建中小学15所,规划投入资金计10.2亿元.数据“10.2亿”用科学记数法表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)下列汽车标志中,既是轴对称图形,又是中心对称图形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄂尔多斯)如图,抛物线的顶点为C(-1,-1),且经过点A、点B和坐标原点O,点B的横坐标为-3.
(1)求抛物线的解析式;
(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为
顶点的四边形为平行四边形,请直接写出点D的坐标;
(3)若点P是抛物线第一象限上的一个动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案