精英家教网 > 初中数学 > 题目详情
如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.
(1)求证:BD=DI;
(2)若OI⊥AD,求
AB+ACBC
的值.
分析:(1)要证明ID=BD,利用内心的定义可以得到∠ABI=∠CBI,然后利用同弧所对的圆周角相等和三角形的外角等于不相邻的两个外角的和,即可证得∠BID=∠IBD,利用等边对等角即可证得;
(2)作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,证得:Rt△BDE≌Rt△AIG,则AG=BE=
1
2
BC,根据直角三角形的内心的性质可得:AG=
1
2
(AB+AC-BC),再根据AB+AC=2BC即可求解.
解答:(1)证明:∵点I是△ABC的内心
∴∠BAD=∠CAD,∠ABI=∠CBI
∵∠CBD=∠CAD
∴∠BAD=∠CBD
∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,
∵∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD
∴ID=BD;

(2)解:连接OA、OD、BD和BI,
∵OA=OD,OI⊥AD
∴AI=ID,
∵I为△ABC内心,
∴∠BAD=∠BCD,
∴弧BD=弧CD,
∵弧CD=弧CD,
∴∠BCD=∠BAD,
∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,
=
1
2
(∠BAC+∠ACB),
∵∠DIB=∠DAB+∠ABI=
1
2
(∠BAC+∠ABC),
∴∠DIB=∠DBI,
∴BD=ID=AI,
BD
=
DC

故OD⊥BC,记垂足为E,则有BE=
1
2
BC,
作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,
∴Rt△BDE≌Rt△AIG,
于是,AG=BE=
1
2
BC,但AG=
1
2
(AB+AC-BC),
故AB+AC=2BC,
AB+AC
BC
=2.
点评:考查圆周角定理,全等三角形的判定与性质,直角三角形的内心的性质,正确证明Rt△BDE≌Rt△AIG是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AD是圆O的直径,AH⊥BC,垂足为H,连接BD.
(1)求证:△ABD∽△AHC;
(2)若tan∠ABC=
1
3
,AH=
3
,CH=
2
,求圆O的直径长.

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(山东潍坊卷)数学(解析版) 题型:选择题

如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连结DC,则∠AEB等于(    )

A.70°    B.110°    C.90°     D.120°

 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连结DC,则∠AEB等于

 


  1. A.
    70°
  2. B.
    110°
  3. C.
    90°
  4. D.
    120°

查看答案和解析>>

科目:初中数学 来源:2008年初中毕业升学考试(山东潍坊卷)数学(带解析) 题型:单选题

如图,△ABC内接于圆O,∠A=50°,∠ABC=60°,BD是圆O的直径,BD交AC于点E,连结DC,则∠AEB等于(   )

A.70°B.110°C.90°D.120°

查看答案和解析>>

同步练习册答案