分析 (1)由折叠即可得到DG=GH=CH,设HC=x,则有DG=GH=x,DH=$\sqrt{2}$x,根据DC=DH+CH=1,就可求出GH;
(2)利用阅读中证明“四边形BCEF为$\sqrt{2}$矩形”的方法就可解决问题;
(3)同(2)中的证明可得:将$\sqrt{3}$矩形沿用(2)中的方式操作1次后,得到一个“$\sqrt{4}$矩形”,将$\sqrt{4}$矩形沿用(2)中的方式操作1次后,得到一个“$\sqrt{5}$矩形”,将$\sqrt{5}$矩形沿用(2)中的方式操作1次后,得到一个“$\sqrt{6}$矩形”,…由此规律就可得到n的值.
解答 解:(1)如图,![]()
由折叠可得:
DG=HG,GH=CH,
∴DG=GH=CH.
设HC=x,则DG=GH=x.
∵∠DGH=90°,
∴DH=$\sqrt{2}$x,
∴DC=DH+CH=$\sqrt{2}$x+x=1,
解得x=$\sqrt{2}$-1.
∴$\sqrt{2}$-1.
(2)证明:∵BC=1,EC=BF=$\frac{\sqrt{2}}{2}$,
∴BE=$\sqrt{E{C}^{2}+B{C}^{2}}$=$\frac{\sqrt{6}}{2}$.
由折叠可得BP=BC=1,∠FNM=∠BNM=90°,∠EMN=∠CMN=90°.
∵四边形BCEF是矩形,
∴∠F=∠FEC=∠C=∠FBC=90°,
∴四边形BCMN是矩形,∠BNM=∠F=90°,
∴MN∥EF,
∴$\frac{BP}{BE}$=$\frac{BN}{BF}$,即BP•BF=BE•BN,
∴1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{2}$BN,
∴BN=$\frac{1}{\sqrt{3}}$,
∴BC:BN=1:$\frac{1}{\sqrt{3}}$=$\sqrt{3}$:1,
∴四边形BCMN是$\sqrt{3}$的矩形;
(3)解:同理可得:
将矩形沿用(2)中的方式操作1次后,得到一个“$\sqrt{4}$矩形”,
将$\sqrt{4}$矩形沿用(2)中的方式操作1次后,得到一个“$\sqrt{5}$矩形”,
将$\sqrt{5}$矩形沿用(2)中的方式操作1次后,得到一个“$\sqrt{6}$矩形”,
…
所以将图②中的$\sqrt{3}$矩形BCMN沿用(2)中的方式操作5次后,得到一个“$\sqrt{9}$矩形”,
则n=9.
点评 本题主要考查了几何变换综合题,掌握轴对称的性质、正方形的性质、矩形的判定与性质、平行线分线段成比例、勾股定理等知识是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 52° | B. | 104° | C. | 120° | D. | 128° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com