精英家教网 > 初中数学 > 题目详情
阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2-6a-8b+25=0,求△ABC的最大边c的值;
(3)已知a-b=4,ab+c2-6c+13=0,则a+b+c=
3
3
分析:(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x与y的值,即可求出2x+y的值;
(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a与b的值,根据边长为正整数且三角形三边关系即可求出c的长;
(3)由a-b=4,得到a=b+4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b与c的值,进而求出a的值,即可求出a+b+c的值.
解答:解:(1)∵x2+2xy+2y2+2y+1=(x2+2xy+y2)+(y2+2y+1)=(x+y)2+(y+1)2=0,
∴x+y=0,且y+1=0,
解得:x=1,y=-1,
则2x+y=2-1=1;
(2)∵a2+b2-6a-8b+25=(a2-6a+9)+(b2-8b+16)=(a-3)2+(b-4)2=0,
∴a-3=0且b-4=0,
解得:a=3,b=4,
∵△ABC的三边长a、b、c都是正整数,
∴△ABC的最大边c的值为5或6;
(3)∵a-b=4,即a=b+4,代入得:(b+4)b+c2-6c+13=0,
整理得:(b2+4b+4)+(c2-6c+9)=(b+2)2+(c-3)2=0,
∴b+2=0,且c-3=0,即b=-2,c=3,a=2,
则a+b+c=2-2+3=3.
故答案为:3
点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:
若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
,x1x2=
c
a
.根据上述材料解决下列问题:
已知关于x的一元二次方程x2=2(1-m)x-m2;有两个实数根:x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:

若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2= -,x1x2= 根据上述材料解决下列问题:

已知关于x的一元二次方程x2 = 2(1-m)x-m2 有两个实数根:x1,x2.

(1)求m的取值范围;

(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值

 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:x1+x2= -,x1x2= 根据上述材料解决下列问题:
已知关于x的一元二次方程x2 = 2(1-m)x-m2 有两个实数根:x1,x2.
(1)求m的取值范围;
(2)设y =" x1" + x2,当y取得最小值时,求相应m的值,并求出最小值

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2-6a-8b+25=0,求△ABC的最大边c的值;
(3)已知a-b=4,ab+c2-6c+13=0,则a+b+c=______.

查看答案和解析>>

同步练习册答案