精英家教网 > 初中数学 > 题目详情

作业宝如图,已知△BAC,AB=AC,O为△ABC外心,D为⊙O上一点,BD与AC的交点为E,且BC2=AC•CE
①求证:CD=CB;
②若∠A=30°,且⊙O的半径为3+数学公式,I为△BCD内心,求OI的长.

①证明:∵BC2=AC•CE,
=
又∵AB=AC,
∴∠BCE=∠ABC,
∴△BCE∽△ACB,
∴∠CBE=∠A,
∵∠A=∠D,
∴∠D=∠CBE,
∴CD=CB;

②解:连接OB、OC,
∵∠A=30°,
∴∠BOC=2∠A=2×30°=60°,
∵OB=OC,
∴△OBC是等边三角形,
∵CD=CB,I是△BCD的内心,
∴OC经过点I,
设OC与BD相交于点F,
则CF=BC×sin30°=BC,
BF=BC•cos30°=BC,
所以,BD=2BF=2×BC=BC,
设△BCD内切圆的半径为r,
则S△BCD=BD•CF=(BD+CD+BC)•r,
BC•BC=BC+BC+BC)•r,
解得r=BC=BC,
即IF=BC,
所以,CI=CF-IF=BC-BC=(2-)BC,
OI=OC-CI=BC-(2-)BC=(-1)BC,
∵⊙O的半径为3+
∴BC=3+
∴OI=(-1)(3+)=3+3-3-=2
分析:①先求出=,然后求出△BCE和△ACB相似,根据相似三角形对应角相等可得∠A=∠CBE,再根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠D,然后求出∠D=∠CBE,然后根据等角对等边即可得证;
②连接OB、OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠BOC=60°,然后判定△OBC是等边三角形,再根据等腰三角形三线合一的性质以及三角形的内心的性质可得OC经过点I,设OC与BD相交于点F,然后求出CF,再根据I是三角形的内心,利用三角形的面积求出IF,然后求出CI,最后根据OI=OC-CI计算即可得解.
点评:本题是圆的综合题型,主要考查了相似三角形的判定与性质,等腰三角形的判定与性质,圆周角定理,等边三角形的判定与性质,三角形的内心的性质,(2)作辅助线构造出等边三角形并证明得到OC经过△BCD的内心I是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC上,连接CE.
(1)∠BAE与∠DAC有何关系?并说明理由;
(2)线段BC与CE在位置上有何关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠BAC的平分线与△ABC的边BC和外接圆分别相交于D、E.
求证:AB•AC=AD•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠BAC=70°,D是△ABC的边BC上的一点,且∠CAD=∠C,∠ADB=80°.求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠BAC=∠DAC,要利用“ASA”判定△ABC≌△ADC,则应添加的条件是
∠ACB=∠ACD
∠ACB=∠ACD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠BAC=40°,∠DAC=10°,若将△ABC绕点A逆时针旋转
30
30
度可使得△ABC与△ADE重合.

查看答案和解析>>

同步练习册答案