精英家教网 > 初中数学 > 题目详情
阅读材料后再解答问题
阿拉伯数学家阿尔•花拉子利用正方形图形巧妙解出了一元二次方程x2+2x-35=0的一个解.
[阿尔.花拉子解法]将边长为xm的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2•x•1+1•1,而由x2+2x-35=0变形及x2+2x+1=35+1(如图所示)
即左边边长为x+1的正方形面积为36.
所以(x+1)2=36,则x=5.
你能运用上述方法构造出符合方程x2+8x-9=0的一个正根的正方形吗?试一试吧!

【答案】分析:因为x2+8x-9=x2+8x+16-25=0,所以x2+8x+16=25,即(x+4)2=25,由此可以构造出边长为x+4的正方形,然后可以得到x+4=5即可解题.
解答:解:如图所示,大正方形边长为x+4,四个面积和为x2+4x+4x+16=x2+8x+16,
而x2+8x-9=x2+8x+16-25=0.
所以x2+8x+16=25,即x+4=5,所以x=1.
点评:此题是信息题,首先读懂题意,正确理解题目解题意图,然后抓住解题关键,可以探索得到大正方形的边长为x+4,而大正方形面积为25,由此可以求出结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,再解答后面的问题.
材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系--密钥,就可以破译它.
密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母--明码对照表”:
字母 A B C D E F G H I J K L M
明码 1 2 3 4 5 6 7 8 9 10 11 12 13
字母 N O P Q R S T U V W X Y Z
明码 14 15 16 17 18 19 20 21 22 13 24 25 26
例如,以y=3x+13为密钥,将“自信”二字进行加密转换后得到下表:
汉字
拼音 Z I X I N
明码:x 26 9 24 9 14
密钥:y=精英家教网
密码:y 91 40      
因此,“自”字加密转换后的结果是“9140”.
问题:
(1)请你求出当密钥为y=3x+13时,“信”字经加密转换后的结果;
(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信”二字用新的密钥加密转换后得到下表:
汉字
拼音 Z I X I N
明码:x 26 9 24 9 14
密钥:y=精英家教网
密码:y 70 36      
请求出这个新的密钥,并直接写出“信”字用新的密钥加密转换后的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题--如图1,从A点出发,到笔直的河岸l去饮马,然后再去B地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B 的值最小.
解答问题:
(1)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B时,整个运动停止.
①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?
②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

77、阅读材料后再解答问题
阿拉伯数学家阿尔•花拉子利用正方形图形巧妙解出了一元二次方程x2+2x-35=0的一个解.
[阿尔.花拉子解法]将边长为xm的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2•x•1+1•1,而由x2+2x-35=0变形及x2+2x+1=35+1(如图所示)
即左边边长为x+1的正方形面积为36.
所以(x+1)2=36,则x=5.
你能运用上述方法构造出符合方程x2+8x-9=0的一个正根的正方形吗?试一试吧!

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料后再解答问题
阿拉伯数学家阿尔•花拉子利用正方形图形巧妙解出了一元二次方程x2+2x-35=0的一个解.
[阿尔.花拉子解法]将边长为xm的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2•x•1+1•1,而由x2+2x-35=0变形及x2+2x+1=35+1(如图所示)
即左边边长为x+1的正方形面积为36.
所以(x+1)2=36,则x=5.
你能运用上述方法构造出符合方程x2+8x-9=0的一个正根的正方形吗?试一试吧!

查看答案和解析>>

同步练习册答案