精英家教网 > 初中数学 > 题目详情

已知直线l1∥l2,直线l3与直线l1、l2分别交于C、D两点.
(1)如图①,有一动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具∠3+∠1=∠2这一相等关系?试说明理由;
(2)如图②,当动点P在线段CD之外运动(不与C、D两点重合),问上述结论是否还成立?若不成立,试写出新的结论并说明理由.

解:(1)∠3+∠1=∠2成立.
理由如下:
过点P作PE∥l1
∴∠1=∠APE;
∵l1∥l2
∴PE∥l2
∴∠3=∠BPE;
又∵∠BPE+∠APE=∠2,
∴∠3+∠1=∠2.

(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.
理由如下:
过点P作PE∥l1
∴∠1=∠APE;
∵l1∥l2
∴PE∥l2
∴∠3=∠BPE;
又∵∠BPE-∠APE=∠2,
∴∠3-∠1=∠2.
分析:(1)相等关系成立.过点P作PE∥l1,则有∠1=∠APE,又因为PE∥l2,又有∠3=∠BPE,因为∠BPE+∠APE=∠2,所以∠3+∠1=∠2;
(2)原关系不成立,过点P作PE∥l1,则有∠1=∠APE;又因为PE∥l2,又有∠3=∠BPE,困为此时∠BPE-∠APE=∠2,则有∠3-∠1=∠2.
点评:本题主要考查平行线的性质:两直线平行内错角相等,解题的关键在于作出正确的辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知直线l1∥l2∥l3,l1与l2相距6cm,又l3距l1为4cm,则l3距l2
2或10
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在四条直线上,正方形ABCD的面积为S.
(1)如图1,已知平行线间的距离均为m,求S.(用含有m的式子表示)
(2)如图2,改变平行线之间的距离,但仍使四边形ABCD为正方形,
①求证:h1=h3
②求证:s=(h1+h2)2+h12
③若
32
h1+h2=1
,求S关于h1的函数关系式,并指出S随h1变化的规律.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2∥l3,直线AC和DF分别与l1、l2、l3相交于点A、B、C和D、E、F.如果AB=1,EF=3,那么下列各式中,正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1∥l2,直线l3,l4分别与l1,l2交于点B,F和A,E,点P是直线l3上一动点(不与点B,F重合),设∠BAP=∠1,∠PEF=∠2,∠APE=∠3.
(1)如上图,当点P在B,F两点之间运动时,试确定∠1,∠2,∠3之间的关系,并给出证明;
(2)当点P在B,F两点外侧运动时,试探究∠1,∠2,∠3之间的关系,画出图形,给出结论,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠PAC+∠PBD=∠APB;
(2)如果点P在直线l1的上方运动时,试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,∠PAC,∠APB,∠PBD之间的关系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接写出结论)

查看答案和解析>>

同步练习册答案