精英家教网 > 初中数学 > 题目详情
如图1,抛物线C1:y=x2-3x-4与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴相交于C点.

(1)如图1,求:抛物线C1顶点D的坐标;
(2)如图2,把抛物线C1以1个单位长度/秒的速度向左平移得到抛物线C2,同时△ABC以2个单位长度/秒的速度向下平移得到△A′B′C′,当抛物线C2的顶点D′落在△A′B′C′之内时.设平移的时间为t秒.
①求t的取值范围;
②若抛物线C2与y轴相交于E点,是否存在这样的t,使得∠A′EB′=90°?若存在,求出t的值;若不存在,请说明理由.
考点:二次函数综合题
专题:
分析:(1)把抛物线C1:y=x2-3x-4转化成顶点式即可.
(2)①由抛物线C1:y=x2-3x-4可知A(-1,0),B(4,0),C(0,-4),求得BC所在的直线由y=x-4,则B′C′所在的直线y=x-4-2t,C′的顶点(
3
2
-t,-
25
4
)代入可得t的值
5
4
,同理可求得D′在A′C′的t值
15
8
,进而求得t的取值.
②通过三角形相似求得EF的值,然后由D′(
3
2
-t,-
25
4
)求得抛物线C2的解析式,求得E的坐标,进而根据EF的长,求得t的值,再与(1)中的取值比较来看解得.
解答:解:(1)抛物线C1:y=x2-3x-4=(x-
3
2
2-
25
4

∴D(
3
2
,-
25
4
).


(2)如图1、2
①∵抛物线C1:y=x2-3x-4与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴相交于C点.
∴A(-1,0),B(4,0),C(0,-4),
则CM=
9
4
,DM=
3
2
,AN=
25
4
,DN=
5
2

CM
2
=
9
8
3
2
AN
2
=
25
8
5
2

∴抛物线C2的顶点D′经过B′C′边进入△A′B′C′之内,经过A′C′边移出△A′B′C′外;
∴BC所在的直线为;y=x-4,B′C′所在的直线为:y=x-4-2t,
∴D′(
3
2
-t,-
25
4
),
代入y=x-4-2t,
得(
3
2
-t)-4-2t=-
25
4

解得;t=
5
4

直线AC所在直线y=-4x-4,A′C′所在直线y=-4x-4-2t,
当D′在直线A′C′上时,-4(
3
2
-t)-4-2t=-
25
4

解得t=
15
8

5
4
<t<
15
8


②如图2所示;记A′B′与y轴的交点为F,假设存在t使得∠A′EB′=90°,
∵∠A′FE=∠EFB′=90°,∠A′EF=∠EB′F;
∴△A′FE∽△EFB′,
EF
BF
=
AF
EF

∴EF2=A′F•B′F=1×4=4,
∴EF=2,
∴抛物线C2为y=(x+t-
3
2
2-
25
4
=x2+2(t-
3
2
)x+(t-
3
2
2-
25
4

∴E{0,(t-
3
2
2-
25
4
},
∴EF=-2t-(t-
3
2
2+
25
4
=2,
解得:t1=2,t2=-1(舍去),
∵t=2>
15
8

∴不存在这样的t的值,使得∠A′EB′=90°.
点评:本题主要考查了相似三角形的性质,二次函数的综合应用,根据二次函数得出相关点的坐标是解题的基础.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,三角形ABC中,A(-2,4),B(-3,1)、C(0,2),将三角形ABC先向右平移3个单位长度,再向下平移2个单位长度,得到三角形A′B′C′.
(1)在坐标系中画出三角形A′B′C′,并写出点A′、B′、C′的坐标;
(2)求三角形A′B′C′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

因式分解:a2x2+4ax2y+4x2y2

查看答案和解析>>

科目:初中数学 来源: 题型:

将一张矩形纸片ABCD(AB<2AD),以它的一条宽为边长剪去一个正方形,将剩下的矩形再以一条宽为边长剪去一个正方形,若第二次剪裁后所留下的矩形与原来的矩形ABCD相似,则矩形ABCD的宽与长的比值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD和正方形CEFG各有两个顶点在坐标轴上,其中A(0,1),B(2,0),E、F两点同在x轴上,双曲线y=
k
x
(k>0)经过边CE的中点Q.
(1)求证:△AOB≌△BEC;   
(2)求该双曲线所表示的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,AD=12cm,点P在AD边以1cm/s的速度从点A向点D运动,点Q从C点出发,以4cm/s的速度在CB间做往返运动,两点同时出发,直到点P到达点D时,P、Q都停止运动,设运动时间为t秒,当t为多少时,四边形ABQP为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是一个由三角形和长方形组成的图形,三角形的底与长方形的长相等且都为6,三角形的高为2,长方形的宽为x.
(1)图形的面积y与长方形的宽之间的关系式是什么?
(2)当长方形的宽是三角形高的2倍时,求该图形的面积.
(3)当x每增加2时,面积y如何变化?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

一副三角板如图所示放置,则S△ODC:S△AOB的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

因式分解:x2(m-2)+(2-m)=
 

查看答案和解析>>

同步练习册答案