【题目】如图,的顶点A(0,3),B(b,0),C(c,0)在x轴上,若。
(1)请判断的形状并予以证明;
(2)如图,过AB上一点D作射线交y轴负半轴与点E,连CD交y轴与F点。若BD=FD,求度数。
(3)在(2)的条件下,,H是AB延长线上一动点,作,HG交射线DE于点G点,则的值是否变化?若变化,请说明理由;若不变,请求出该值。
【答案】(1)△ABC为等腰直角三角形,理由见解析;(2)15°;(2)2.
【解析】
(1)结论:△ABC是等腰直角三角形.通过计算出B、C的坐标,结合A的坐标可证明△AOB和△AOC都是等腰直角三角形,继而可证△ABC是等腰直角三角形;
(2)连接BF,分别根据DB=DF, FB=FC可证明∠DBF=∠DFB,∠FBC=∠BCD.根据∠DFB=∠FBC+∠BCD,可设∠FBC=∠BCD=x,利用方程思想求得度数.
(3)结论:的值是定值,定值为2.连接CG.在DG上截取DK,使得DK=DH.只要证明DG=DH+CD,CD=2AD即可解决问题.
(1)结论:△ABC是等腰直角三角形.
理由:
∵,
∴b=-3,c=3
∴B(-3,0),C(3,0)
∵A(0,3)
∴OB=OC=OA,
∵AO⊥BC
∴AB=AC,△AOB和△AOC都是等腰直角三角形
∴∠BAO=∠OBA=∠OAC=∠OCA=45°
∴∠BAC=90°
∴△ABC是等腰直角三角形.
(2)证明:如图,连接BF,BE.
∵DB=DF,
∴∠DBF=∠DFB,
∴OA垂直平分线段BC,
∴FB=FC,
∴∠FBC=∠BCD,设∠FBC=∠BCD=x,
∴∠DFB=∠FBC+∠BCD=2x,
∴∠DBF=2x,
∵∠DBF+∠FBC=∠ABO
∴3x=45°,
∴x=15°,
∴∠BCD=15°
(3)结论:的值是定值,定值为2.
理由:如图2中,连接CG.在DG上截取DK,使得DK=DH.
∵
∴∠AFD=∠OFC=90°-∠BCD=90°-15°=75°
∴∠CDG=∠AFD-∠DEF=75°-15°=60°.
在△BCD中,∠ABC+∠BCD+∠BDC=180°
∴∠BDC=180°-∠ABC-∠BCD=180°-45°-15°=120°
∴∠CDG=∠GDH=60°
∵∠CHG=60°,
∴∠CDG=∠CHG,
∴C,D,H,G四点共圆,
∴∠HCG=∠GDH=60°,
∴△HCG是等边三角形,
∵DH=DK,∠HDK=60°,
∴△HDK是等边三角形,
∵∠DHK=∠CHG=60°,
∴∠DHC=∠KHG,
∵DH=DK,HC=HG,
∴△DHC≌△KHG(SAS),
∴CD=KG,
∴DG=DK+KG,
∵DK=DH,KG=CD,
∴DG=DH+CD,
∴DGDH=CD,
在Rt△ADC中,∵∠ACD=∠ACB-∠BCD=30°,
∴CD=2AD,
∴DGDH=2AD,
∴.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点;按此做法进行下去,其中的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计), 右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定。游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营。
(1)用画树状图的方法表示三次抛掷硬币的所有结果。
(2)小刚任意挑选两球队的概率有多大?
(3)这个游戏规则对两个球队是否公平?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384 m2,求x的值;
(3)求菜园的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com