Èçͼ1¡«4Ëùʾ£¬Ã¿¸öͼÖеġ°7¡±×ÖÐÎÊÇÓÉÈô¸É¸ö±ß³¤ÏàµÈµÄÕý·½ÐÎÆ´½Ó¶ø³É£¬¡°7¡±×ÖÐεÄÒ»¸ö¶¥µãPÂäÔÚ·´±ÈÀýº¯Êýy=
1
x
µÄͼÏóÉÏ£¬Áí¡°7¡±×ÖÐÎÓÐÁ½¸ö¶¥µãÂäÔÚxÖáÉÏ£¬Ò»¸ö¶¥µãÂäÔÚyÖáÉÏ£®
£¨1£©Í¼1ÖеÄÿһ¸öСÕý·½ÐεÄÃæ»ýÊÇ
1
3
1
3
£»
£¨2£©°´ÕÕͼ1¡úͼ2¡úͼ¡úͼ4¡ú¡­ÕâÑùµÄ¹æÂÉÆ´½ÓÏÂÈ¥£¬µÚn¸öͼÐÎÖÐÿһ¸öСÕý·½ÐεÄÃæ»ýÊÇ
n2+1
n(n+1)(2n+1)
n2+1
n(n+1)(2n+1)
£®£¨Óú¬nµÄ´úÊýʽ±íʾ£©
·ÖÎö£º£¨1£©×÷PA¡ÍyÖáÓÚA£¬Í¼Öеġ°7¡±×ÖÐÎÓë×ø±êÖáµÄ½»µã·Ö±ðΪB¡¢C¡¢D£¬Èçͼ1£¬Éèÿһ¸öСÕý·½Ðεı߳¤Îªa£¬Ö¤µÃRt¡÷ECD¡×Rt¡÷OBC¡×Rt¡÷APB£¬ÀûÓÃÏàËƱȵõ½
OB
OC
=
AP
AB
=
CE
ED
=
a
a
=1£¬ÔÙ·Ö±ðÔÚÔÚRtOBCºÍRt¡÷ABPÖУ¬ÀûÓù´¹É¶¨ÀíµÃµ½OB=
a
2
£¬AB=AP=
2
2
a£¬ÔòPµã×ø±êΪ£¨
2a
2
£¬
3a
2
£©£¬È»ºó°ÑPµã×ø±ê´úÈë·´±ÈÀýº¯Êý½âÎöʽµÃµ½a2=
1
3
£»
£¨2£©¶ÔÓÚÈçͼ2¡¢Í¼3¡¢Í¼4ÀûÓÃͬÑùµÄ·½·¨¿ÉµÃµ½Ã¿Ò»¸öСÕý·½ÐεÄÃæ»ý£¬È»ºó°Ñ¼ÆËãµÄ½á¹û½øÐбäÐΣ¬¹Û²ìÆäÖеĹæÂÉ£¬¿É·¢ÏÖµÚn¸öͼÿһ¸öСÕý·½ÐεÄÃæ»ý=
n2+1
n(n+1)(2n+1)
£®
½â´ð£º½â£º£¨1£©×÷PA¡ÍyÖáÓÚA£¬Í¼Öеġ°7¡±×ÖÐÎÓë×ø±êÖáµÄ½»µã·Ö±ðΪB¡¢C¡¢D£¬Èçͼ1£¬
Éèÿһ¸öСÕý·½Ðεı߳¤Îªa£¬
Ò×Ö¤µÃRt¡÷ECD¡×Rt¡÷OBC¡×Rt¡÷APB£¬
¡à
CE
OB
=
DE
OC
£¬
CE
AP
=
DE
AB
£¬
¡à
OB
OC
=
AP
AB
=
CE
ED
=
a
a
=1£¬
ÔÚRtOBCÖУ¬BC=a£¬
¡ßOB2+OC2=BC2=a2£¬OB=OC£¬
¡àOB=
a
2
£¬
ÔÚRt¡÷ABPÖУ¬PB=2a£¬
¡ßAB2+AP2=BP2=4a2£¬AB=AP£¬
¡àAB=AP=
2
2
a£¬
¡àOA=
3a
2
£¬
¡àPµã×ø±êΪ£¨
2a
2
£¬
3a
2
£©£¬
¡à
2a
2
3a
2
=1£¬
¡àa2=
1
3
£»

£¨2£©Èçͼ2£¬Í¬ÑùµÃµ½Rt¡÷ECD¡×Rt¡÷OBC¡×Rt¡÷APB£¬
¡à
CE
OB
=
DE
OC
£¬
CE
AP
=
DE
AB
£¬
¡à
OB
OC
=
AP
AB
=
CE
ED
=
2a
a
=2£¬
ÔÚRtOBCÖУ¬BC=a£¬
¡ßOB2+OC2=BC2=a2£¬OB=2OC£¬
¡àOB=
2a
5
£¬
ÔÚRt¡÷ABPÖУ¬PB=3a£¬
¡ßAB2+AP2=BP2=9a2£¬AB=2AP£¬
¡àAB=
3a
5
£¬AP=
6a
5

¡àOA=
5a
5
£¬
¡àPµã×ø±êΪ£¨
6a
5
£¬
5a
5
£©£¬
¡à
6a
5
5a
5
=1£¬
¡àa2=
5
30
£»
Èçͼ3£¬Ò×Ö¤µÃRt¡÷ECD¡×Rt¡÷OBC¡×Rt¡÷APB£¬
¡à
CE
OB
=
DE
OC
£¬
CE
AP
=
DE
AB
£¬
¡à
OB
OC
=
AP
AB
=
CE
ED
=
3a
a
=3£¬
ͬÀí¿ÉµÃa2=
10
84
£»
Èçͼ4£¬Ò×Ö¤µÃRt¡÷ECD¡×Rt¡÷OBC¡×Rt¡÷APB£¬
¡à
CE
OB
=
DE
OC
£¬
CE
AP
=
DE
AB
£¬
¡à
OB
OC
=
AP
AB
=
CE
ED
=
4a
a
=4£¬
ͬÀí¿ÉµÃa2=
17
180
£»
¡ßµÚ1¸öͼÿһ¸öСÕý·½ÐεÄÃæ»ý=
1
3
=
2
2¡Á3
=
12+1
1¡Á(1+1)¡Á(2+1)
£»
µÚ2¸öͼÿһ¸öСÕý·½ÐεÄÃæ»ý=
5
30
=
5
6¡Á5
=
22+1
2¡Á(2+1)¡Á(2¡Á2+1)
£»
µÚ3¸öͼÿһ¸öСÕý·½ÐεÄÃæ»ý=
10
12¡Á7
=
32+1
3¡Á(3+1)(2¡Á3+1)
£»
µÚ4¸öͼÿһ¸öСÕý·½ÐεÄÃæ»ý=
17
180
=
17
4¡Á5¡Á9
=
42+1
4¡Á(4+1)(2¡Á4+1)
£¬
¡àµÚn¸öͼÿһ¸öСÕý·½ÐεÄÃæ»ý=
n2+1
n(n+1)(2n+1)
£®
¹Ê´ð°¸Îª£¨1£©
1
3
£»£¨2£©
n2+1
n(n+1)(2n+1)
£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄ×ÛºÏÌ⣺·´±ÈÀýº¯ÊýͼÏóµÄµãµÄ×ø±êÂú×ãÆ亯Êý½âÎöʽ£»ÊìÁ·ÔËÓÃÕý·½ÐεÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÏàËƱȺ͹´¹É¶¨Àí½øÐмÆË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º044

ÒÑÖªÒ»¸ö¼¸ºÎÌåµÄ¸©ÊÓͼÈçͼ3-1-21Ëùʾ£¬Ã¿¸öСÕýÐÎÖеÄÊý×Ö±íʾÕâÒ»ÊúÐÐÉÏСÕý·½ÌåµÄ¸öÊý£¬Çë¸ù¾ÝÌõ¼þ»­³öÕâ¸ö¼¸ºÎÌåµÄÖ÷ÊÓͼºÍ×óÊÓͼ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

Èçͼ1¡«4Ëùʾ£¬Ã¿¸öͼÖеġ°7¡±×ÖÐÎÊÇÓÉÈô¸É¸ö±ß³¤ÏàµÈµÄÕý·½ÐÎÆ´½Ó¶ø³É£¬¡°7¡±×ÖÐεÄÒ»¸ö¶¥µãPÂäÔÚ·´±ÈÀýº¯Êýy=Êýѧ¹«Ê½µÄͼÏóÉÏ£¬Áí¡°7¡±×ÖÐÎÓÐÁ½¸ö¶¥µãÂäÔÚxÖáÉÏ£¬Ò»¸ö¶¥µãÂäÔÚyÖáÉÏ£®
£¨1£©Í¼1ÖеÄÿһ¸öСÕý·½ÐεÄÃæ»ýÊÇ______£»
£¨2£©°´ÕÕͼ1¡úͼ2¡úͼ¡úͼ4¡ú¡­ÕâÑùµÄ¹æÂÉÆ´½ÓÏÂÈ¥£¬µÚn¸öͼÐÎÖÐÿһ¸öСÕý·½ÐεÄÃæ»ýÊÇ______£®£¨Óú¬nµÄ´úÊýʽ±íʾ£©
×÷Òµ±¦

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2013-2014ѧÄêËÄ´¨Ê¡³É¶¼ÊиßÐÂÇø¾ÅÄ꼶ÉÏѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ1¡«4Ëùʾ£¬Ã¿¸öͼÖеġ°7¡±×ÖÐÎÊÇÓÉÈô¸É¸ö±ß³¤ÏàµÈµÄÕý·½ÐÎÆ´½Ó¶ø³É£¬¡°7¡±×ÖÐεÄÒ»¸ö¶¥µãÂäÔÚ·´±ÈÀýº¯ÊýµÄͼÏñÉÏ£¬Áí¡°7¡±×ÖÐÎÓÐÁ½¸ö¶¥µãÂäÔÚÖáÉÏ£¬Ò»¸ö¶¥µãÂäÔÚÖáÉÏ.

£¨1£©Í¼1ÖеÄÿһ¸öСÕý·½ÐεÄÃæ»ýÊÇ          £»

£¨2£©°´ÕÕͼ1ͼ2ͼ3ͼ4ÕâÑùµÄ¹æÂÉÆ´½ÓÏÂÈ¥£¬µÚ¸öͼÐÎÖÐÿһ¸öСÕý·½ÐεÄÃæ»ýÊÇ            .£¨Óú¬µÄ´úÊýʽ±íʾ£©

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ººþ±±Ê¡Öп¼ÕæÌâ ÌâÐÍ£º½â´ðÌâ

ij³µÕ¾¿ÍÁ÷Á¿´ó£¬ÂÿÍÍùÍùÐ賤ʱ¼äÅŶӵȺò¹ºÆ±£¬¾­µ÷²éͳ¼Æ·¢ÏÖ£¬Ã¿Ì쿪ʼÊÛƱʱ£¬Ô¼ÓÐ300ÃûÂÿÍÅŶӵȺò¹ºÆ±£¬Í¬Ê±ÓÐеÄÂÿͲ»¶Ï½øÈëÊÛƱÌüÅŶӵȺò¹ºÆ±£¬ÐÂÔö¹ºÆ±ÈËÊýy£¨ÈË£©ÓëÊÛƱʱ¼ä x£¨·Ö£©µÄº¯Êý¹ØϵÈçͼ£¨1£©Ëùʾ£»Ã¿¸öÊÛƱ´°¿ÚÊÛƱÊýy£¨ÈË£©ÓëÊÛƱʱ¼äx£¨·Ö£©µÄº¯Êý¹ØϵÈçͼ£¨2£©Ëùʾ£¬Ä³ÌìÊÛƱÌüÅŶӵȺò¹ºÆ±µÄÈËÊýy£¨ÈË£©ÓëÊÛƱʱ¼äx£¨·Ö£©µÄº¯Êý¹ØϵÈçͼ£¨3£©Ëùʾ£¬ÒÑÖªÊÛƱµÄÇ°a·ÖÖÓ¿ª·ÅÁËÁ½¸öÊÛƱ´°¿Ú¡£
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÇóÊÛƱµ½µÚ60·ÖÖÓʱ£¬ÊÛƱÌüÅŶӵȺò¹ºÆ±µÄÂÿÍÈËÊý£»
£¨3£©¸Ã³µÕ¾ÔÚѧϰʵ¼ù¿Æѧ·¢Õ¹¹ÛµÄ»î¶¯ÖУ¬±¾×Å¡°ÒÔ ÈËΪ±¾£¬·½±ãÂÿ͡±µÄ×ÚÖ¼£¬¾ö¶¨ÔöÉèÊÛƱ´°¿Ú£®Èô ÒªÔÚ¿ªÊ¼ÊÛƱºó°ëСʱÄÚÈÃËùÓÐÅŶӹºÆ±µÄÂÿͶ¼Äܹºµ½Æ±£¬ÒÔ±ãºóÀ´µ½Õ¾µÄÂÿÍÄÜËæµ½Ë湺£¬ÇëÄã°ïÖú¼ÆË㣬ÖÁÉÙÐèͬʱ¿ª·Å¼¸¸öÊÛƱ´°¿Ú£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸