分析 (1)连接OC,由切线的性质可求得∠A=∠D,可证得结论;
(2)在Rt△OCD中可求得OD,CD,可求得△OCD的面积和扇形BOC的面积,再利用面积差可求得阴影部分面积.
解答
(1)证明:
如图,连接OC,
∵CD切⊙O于点C,
∴∠OCD=90°,
∴∠OCA=∠OAC=30°,∠ADC=30°,
∴∠A=∠D,
∴AC=CD;
(2)解:
由(1)知∠OCD=90°,∠ADC=30°,∠COD=60°,
∴OD=2OC=4,CD=2$\sqrt{3}$,
∴S△OCD=$\frac{1}{2}$CD•OC=$\frac{1}{2}$×2$\sqrt{3}$×2=2$\sqrt{3}$,S扇形BOC=$\frac{60πO{C}^{2}}{360}$=$\frac{2π}{3}$,
∴S阴影=S△OCD-S扇形BOC=2$\sqrt{3}$-$\frac{2π}{3}$.
点评 本题主要考查切线的性质,掌握过切点的半径垂直切线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com