精英家教网 > 初中数学 > 题目详情
18.已知正方形ABCD,E为平面内任意一点,连结DE,将线段DE绕点D顺时针旋转90°得到DG,连结EC,AG.
(1)当点E在正方形ABCD内部时,
①依题意补全图形;
②判断AG与CE的数量关系与位置关系并写出证明思路.
(2)当点B,D,G在一条直线时,若AD=4,DG=$\sqrt{2}$,求CE的长.

分析 (1)依题意补全图形,如图1所示,
(2)由旋转得到∠GDA=∠EDC,判断出△AGD≌△CED,得出∠AFH=∠HDC=90°即可;
(3)由正方形的线段得到MD=MG=1,再根据勾股定理计算即可.

解答 证明:(1)
①依题意补全图形,如图1所示,

②AG=CE,AG⊥CE.
证明思路如下:

由正方形ABCD,可得AD=CD,∠ADC=90°,
由DE绕着点D顺时针旋转90°得DG,
∴∠GDE=∠ADC=90°,GD=DE
∴∠GDA=∠EDC.
∵DG=DE,AD=CD,
∴△AGD≌△CED,
∴AG=CE.
延长CE分别交AG、AD于点F、H,
∵△AGD≌△CED,
∴∠GAD=∠ECD,
∵∠AHF=∠CHD,
∴∠AFH=∠HDC=90°
∴AG⊥CH.
(2)当点G在线段BD的延长线上时,如图3所示.

过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADB=∠GDM=45°.
∵GM⊥AD,DG=$\sqrt{2}$,
∴MD=MG=1
在Rt△AMG中,由勾股定理,得AG=$\sqrt{A{M}^{2}+M{G}^{2}}$=$\sqrt{26}$
∴CE=AG=$\sqrt{26}$
当点G在线段BD上时,如图4所示.

过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADG=45°
∵GM⊥AD,DG=$\sqrt{2}$,
∴MD=MG=1
在Rt△AMG中,由勾股定理,得AG=$\sqrt{A{M}^{2}+M{G}^{2}}$=$\sqrt{10}$,
∴CE=AG=$\sqrt{10}$
故CE的长为$\sqrt{26}$或$\sqrt{10}$.

点评 此题是几何变换综合题,主要考查了旋转的性质,全等三角形的性质和判定,勾股定理,判定三角形全等是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.已知y=y1-y2,y1与x成正比例函数,y2与x+3成反比例,当x=0时,y=3;当x=3时,y=0,求y与x的函数关系式,并指出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在△ABC中,D,E两点分别在边AB,AC上,AB=8cm,AC=6cm,AD=3cm,要使△ADE与△ABC相似,则线段AE的长为4或$\frac{9}{4}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知抛物线y=ax2+bx-3a的对称轴为直线x=1,且经过点(0,3).
(1)求a,b的值;
(2)若抛物线与直线y=-$\frac{1}{m}$(x-3)(m≠0)两交点的横坐标为x1,x2,n=x1+x2-2,P(1,y0),Q(x0,$\frac{1}{2}$)两点在动点M(m,n)所形成的曲线上,求直线PQ的解析式;
(3)若抛物线与x轴交于A,B两点,C是x轴下方抛物线上的一点,∠ACB=45°,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义感知:我们把顶点关于y轴对称,且交于y轴上同一点的两条抛物线叫做“孪生抛物线”,该点叫“孪生抛物线”的“共点”.如图所示的抛物线y1=x2+2x+2与y2=x2-2x+2是一对“孪生抛物线”,其“共点”为点A.
初步运用:
(1)判断下列论断是否正确?正确的在题后横线上打“√”,错误的则打“×”:
①“孪生抛物线”的“共点”不能分布在x轴上.×
②“孪生抛物线”y=(x-2)2-9与y=(x+2)2-9的“共点”坐标为(0,5).√
(2)填空:抛物线y=-2x2-4x+5的“孪生抛物线”的解析式为y=-2x2-4x+5.
延伸拓展:在平面直角坐标系中,记“孪生抛物线”的两顶点分别为M,M′,且MM′=4,其“共点”A与M,M′,O三点恰好构成一个面积为12的菱形,试求该“孪生抛物线”的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,点P是反比例函数在第二象限上的一点,且矩形PEOF的面积为5,则反比例函数的表达式为y=-$\frac{5}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在菱形ABCD中,DE⊥AB,cosA=$\frac{4}{5}$,BE=2,则tan∠DBE=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在平行四边形ABCD中,AB∥EF,AD∥GH,EF与GH交于点O,分别的4个小平行四边形的面积分别为S1,S2,S3,S4,若S1=8,S2=10,S3=30,则S4=24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.甲、乙两辆卡车匀速行驶在某公路上.
(1)如果甲车以60km/h的速度从某地出发,写出它行驶的路程s1(km)和它的行驶时间t(h)之间的函数表达式,并画出它的图象;
(2)如果乙车在甲车出发2h后从同一地点出发,沿同一方向以80km/h的速度行驶,它行驶的路程s2(km)也是甲车出发后的行驶时间t(h)的函数,写出它的表达式,并在前一个坐标系中画出它的图象;
(3)求出两图象交点的坐标,并说明交点坐标的实际意义.

查看答案和解析>>

同步练习册答案