精英家教网 > 初中数学 > 题目详情
(2010•西藏)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
【答案】分析:(1)根据题意易求y与x之间的函数表达式.
(2)已知函数解析式,设y=4800可从实际得x的值.
(3)利用x=-求出x的值,然后可求出y的最大值.
解答:解:(1)根据题意,得y=(2400-2000-x)(8+4×),
即y=-x2+24x+3200;(2分)

(2)由题意,得-x2+24x+3200=4800.
整理,得x2-300x+20000=0.(4分)
解这个方程,得x1=100,x2=200.(5分)
要使百姓得到实惠,取x=200元.
∴每台冰箱应降价200元;(6分)

(3)对于y=-x2+24x+3200=-(x-150)2+5000,
当x=150时,(8分)
y最大值=5000(元).
所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.(10分)
点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.借助二次函数解决实际问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•西藏)某班同学为西南五省区抗旱救灾捐款,其中七名同学捐款数分别是:20,25,20,30,35,20,30(单位:元),这些数据的众数和中位数分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•西藏)某工厂有80台机器,一台机器平均每天生产200件产品,为了增加产量,工厂决定增加几台相同的机器,因为其他生产条件不变,所以每增加一台机器,每台机器每台少生产2件产品.设增加x台机器,生产总量为y件.
(1)写出y与x之间的关系式;(不要求写自变量x的取值范围)
(2)该工厂有没有最大生产总量?若有,那么增加多少台机器时有最大生产总量?最大生产总量是多少?

查看答案和解析>>

科目:初中数学 来源:2010年贵州省遵义市中考学综合练习(二)(解析版) 题型:解答题

(2010•西藏)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:2009年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2010•西藏)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

同步练习册答案