精英家教网 > 初中数学 > 题目详情
如图所示,直线l⊥l2,垂足为点O,A、B是直线l上的两点,且OB=2,AB=.直线l绕点O按逆时针方向旋转60°到l1,A、B对应在l1上的点为A′、B′,在直线l2上找点P,使得△B′PA′是以∠PB′A′为顶角的等腰三角形,此时OP=   
【答案】分析:如图,以点B′为圆心,AB为半径画圆,与l2的交点即是P点.则在直角三角形OB′D中,解直角三角形,即可求解.
解答:解:(1)在直线l2上找点P,使得△BPA是以∠B为顶角的等腰三角形,
则以点B′为圆心,AB为半径画圆即可.
与l2的交点就是点P.
从B′点作OP的高B′D,

则在直角三角形OB′D中,解直角三角形可知:OD=
所以PO=-1或+1.
故答案为:-1或+1.
点评:本题综合考查了旋转与等腰三角形的知识,注意要做等腰三角形,腰一端的为顶点画圆是最好的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、如图所示,直线AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列分类不同于其它三个的(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.

(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=
4
n
4
n

(3)当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn.则S1+S2+…+Sn=
2n
2n
.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6;②∠2=∠8;③∠1+∠4=180°;④∠3=∠8,其中能判断是a∥b的条件的序号是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,直线AB∥CD,CO⊥OD于O点,并且∠1=40度.则∠D的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

将一张矩形纸板沿对角线剪开得到两个三角形,△ABC与△DEF,∠B=∠E=90°,如图①所示.
(1)将△ABC与△DEF按如图②方式摆放,使点B与E重合,点C、B、E、F在同一条直线上,边AB与DE重合,连接CD、FA,并延长FA交CD于G.试证:FA⊥CD
(2)在(1)所述基础上,将纸板△ACB沿直线CF向右平移,并剪去ED右侧部分,此时CA与ED的交点为A1,连接CD、FA1,并延长FA1交CD于G,如图③所示,直线FA1和CD的位置关系是
 
(直接写出)
(3)在(2)所述基础上,将纸板△A1CE绕点E逆时针旋转α度(0°<α<90°)至如图④所示位置,连接CD、FA1,CD与FA1交于点G,试判断FA1与CD的位置关系?并说明理由.
精英家教网

查看答案和解析>>

同步练习册答案