精英家教网 > 初中数学 > 题目详情

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
解:OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:                                                        
依据2:                                                        
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

(1)依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等;
(2)见解析;
(3)OM=ON,OM⊥ON.理由见解析.

解析试题分析:(1)根据等腰三角形的性质和角平分线性质得出即可;
(2)证△OMA≌△ONB(AAS),即可得出答案;
(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.
(1)解:依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等.
(2)证明:∵CA=CB,
∴∠A=∠B,
∵O是AB的中点,
∴OA=OB.
∵DF⊥AC,DE⊥BC,
∴∠AMO=∠BNO=90°,
∵在△OMA和△ONB中
 ,
∴△OMA≌△ONB(AAS),
∴OM=ON. 
(3)解:OM=ON,OM⊥ON.理由如下:
如图2,连接OC,
∵∠ACB=∠DNB,∠B=∠B,
∴△BCA∽△BND,

∵AC=BC,
∴DN=NB.
∵∠ACB=90°,
∴∠NCM=90°=∠DNC,
∴MC∥DN,
又∵DF⊥AC,
∴∠DMC=90°,
即∠DMC=∠MCN=∠DNC=90°,
∴四边形DMCN是矩形,
∴DN=MC,
∵∠B=45°,∠DNB=90°,
∴∠3=∠B=45°,
∴DN=NB,
∴MC=NB,
∵∠ACB=90°,O为AB中点,AC=BC,
∴∠1=∠2=45°=∠B,OC=OB(斜边中线等于斜边一半),
在△MOC和△NOB中
 ,
∴△MOC≌△NOB(SAS),
∴OM=ON,∠MOC=∠NOB,
∴∠MOC-∠CON=∠NOB-∠CON,
即∠MON=∠BOC=90°,
∴OM⊥ON.

考点:全等三角形的判定与性质;角平分线的性质;等腰三角形的性质;矩形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

若∠A的补角为78°29′.则∠A=               

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)∠DCA的度数;
(2)∠DCE的度数. 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线AC∥DF,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF。

以下是他的想法,请你填上根据。小华是这样想的:
因为CF和BE相交于点O,
根据                                  得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知 EO=BO,                
根据                                  得出△COB≌△FOE,   
根据                                  得出BC=EF,
根据                                  得出∠BCO=∠F,
既然∠BCO=∠F,根据                                              出AB∥DF,
既然AB∥DF,根据                                           得出∠ACE和∠DEC互补.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.
解:∵EF∥AD(已知)
∴∠2= _________ (  )
又∵∠1=∠2(已知)
∴∠1=∠3(  )
∴AB∥ _________ (  )
∴∠BAC+ _________ =180°(  )
∵∠BAC=70°(已知)
∴∠AGD= _________ .

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,已知直线AB及AB外一点C, 过点C作直线EF∥AB (要求:不写作法,保留作图痕迹)(5分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线a∥b,∠1︰∠2︰∠3 =2︰3︰6 ,求∠1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:
⑴试说明:OB∥AC;
⑵如图②,若点E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.试求∠EOC的度数;
⑶在⑵的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;
⑷在⑶的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.

查看答案和解析>>

同步练习册答案