| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2 | D. | 2.5 |
分析 作CF⊥AD于F,由平行四边形的性质得出∠ADC=∠ABC=60°,CD=AB=4,OA=OC,求出∠DCF=30°,由直角三角形的性质得出DF=$\frac{1}{2}$CD=2,求出CF=$\sqrt{3}$DF=2$\sqrt{3}$,证出OE是△ACF的中位线,由三角形中位线定理得出OE的长即可.
解答 解:作CF⊥AD于F,如图所示:![]()
∵四边形ABCD是平行四边形,
∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,
∴∠DCF=30°,
∴DF=$\frac{1}{2}$CD=2,
∴CF=$\sqrt{3}$DF=2$\sqrt{3}$,
∵CF⊥AD,OE⊥AD,CF∥OE,
∵OA=OC,
∴OE是△ACF的中位线,
∴OE=$\frac{1}{2}$CF=$\sqrt{3}$;
故选:A.
点评 本题考查了平行四边形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识;熟练掌握平行四边形的性质,证出OE是三角形的中位线是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (0,0) | B. | (-2,1) | C. | (-2,-1) | D. | (0,-1) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\root{3}{7}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 平均数 | B. | 中位数 | C. | 众数 | D. | 方差 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com