精英家教网 > 初中数学 > 题目详情
若一个函数图象的对称轴是y轴,则该函数称为偶函数.给出下列四个函数:①y=2x;②y=
3
|x|
;③y=-
3
x2
④y=(x-1)2+2,是偶函数的是(  )
A、②③B、②④C、①③D、①④
分析:根据对称轴是y轴,排除①选项,再观察其他的函数的图象确定是不是偶函数,即可确定答案.
解答:解:①y=2x,是正比例函数,函数图象的对称轴不是y轴,错误;
②y=
3
|x|
图象的对称轴是y轴,正确;
③y=-
3
x2是抛物线,对称轴是y轴,是偶函数,正确;
④y=(x-1)2+2对称轴是x=1,错误.
故属于偶函数的是②③,
故选A.
点评:本题主要考查正比例函数、反比例函数、二次函数的对称性和二次函数是偶函数的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•通州区一模)我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线.如图,二次函数y=x2-2x-3的图象与x轴交于点A、B,与y轴交于点D,AB为半圆直径,半圆圆心为点M,半圆与y轴的正半轴交于点C.
(1)求经过点C的“蛋圆”的切线的表达式;
(2)求经过点D的“蛋圆”的切线的表达式;
(3)已知点E是“蛋圆”上一点(不与点A、点B重合),点E关于x轴的对称点是F,若点F也在“蛋圆”上,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盐城)如图①,若二次函数y=
3
6
x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=
3
x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=
3
x的图象于点D,连结AC,交正比例函数y=
3
x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•贺州)如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,
72
),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年广西贺州市中考数学试卷(解析版) 题型:解答题

如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年广西河池市宜州市中考数学一模试卷(解析版) 题型:解答题

如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax2+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.

查看答案和解析>>

同步练习册答案