精英家教网 > 初中数学 > 题目详情
(2003•无锡)三角形的周长小于13,且各边长为互不相等的整数,则这样的三角形共有( )
A.2个
B.3个
C.4个
D.5个
【答案】分析:首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于5;
再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.
解答:解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过5;
所有的情况有:1、1、1;1、2、2;1、3、3;1、4、4;1、5、5;2、2、2;2、2、3;2、3、3;2、3、4;2、4、4;2、4、5;2、5、5;3、3、3;3、3、4;3、3、5;3、4、4;3、4、5;4、4、4,
再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.
故选B.
点评:此题要紧密结合三角形的三边关系进行分析.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《图形的对称》(02)(解析版) 题型:解答题

(2003•无锡)(1)解不等式:
(2)做一做:

用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如:“13+23+33+43+53+63+73+83+93+103”可表示为
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:______(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《不等式与不等式组》(02)(解析版) 题型:解答题

(2003•无锡)(1)解不等式:
(2)做一做:

用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如:“13+23+33+43+53+63+73+83+93+103”可表示为
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:______(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《代数式》(03)(解析版) 题型:解答题

(2003•无锡)(1)解不等式:
(2)做一做:

用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如:“13+23+33+43+53+63+73+83+93+103”可表示为
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:______(填写最后的计算结果).

查看答案和解析>>

科目:初中数学 来源:2003年江苏省无锡市中考数学试卷(解析版) 题型:解答题

(2003•无锡)(1)解不等式:
(2)做一做:

用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图2,图3,图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)
(3)读一读:
式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.
由于上述式子比较长,书写也不方便,为了简便起见,我们可以将
“1+2+3+4+5+…+100”表示为,这里“Σ”是求和符号.
例如:“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为;又如:“13+23+33+43+53+63+73+83+93+103”可表示为
同学们,通过对以上材料的阅读,请解答下列问题:
<1>2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为______;
<2>计算:______(填写最后的计算结果).

查看答案和解析>>

同步练习册答案