精英家教网 > 初中数学 > 题目详情

作业宝已知:⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E,∠BCD=∠BAC.
(1)求证:AC=AD;
(2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.

证明:(1)连接AD,
∵∠BCD=∠BAC,∠CBE=∠ABC,
∴△CBE∽△ABC,
∴∠BEC=∠BCA=90°,
∴∠CBA=∠ECA,
又∵∠D=∠ABC,
∴∠D=∠ACD,
∴AC=AD.

(2)连接OC,令∠CAB=20°,
∵OA=OC,
∴∠ACO=∠CAB=20°,
∴∠COB=20°+20°=40°,
∴∠OCB=(180°-40°)=70°,
∴∠FCO=∠FCB+∠OCB=70°+30°=100°,
故此时FC不是⊙O的切线.
同理,当∠CAB=50°时,FC不一定是⊙O的切线.
分析:(1)连接AD.根据∠BCD=∠BAC,∠CBE=∠ABC,证出△CBE∽△ABC,可得∠BEC=90°,于是∠D=∠CBA=∠ACD,故AC=AD.
(2)连接OC,不正确,可令∠CAB=20°,据此推出∠OCF≠90°,从而证出∠BCF=30°时“CF不一定是⊙O的切线”.
点评:本题考查了切线的判定、垂径定理、圆周角定理,作出辅助线OC、AD是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知点F是△ABC的边BC的延长线上的一点,DF⊥AB于D,交AC于E,且∠A=56°,∠F=31°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、已知点G是△ABC的重心,AD是中线,如果AG=6,那么AD=
9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点O是△ABC的外心,若∠A=60°,则∠BOC=
120
120
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点O是△ABC的∠ABC和∠ACB平分线的交点,过O作EF平行于BC交AB于E,交AC于F,AB=12,AC=18,则△AEF的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE.
求证:(1)∠BAE=∠CAE;    (2)AD⊥BC.

查看答案和解析>>

同步练习册答案