精英家教网 > 初中数学 > 题目详情
(2013•南平)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设
ABBC
=k.
(1)证明:△BGF是等腰三角形;
(2)当k为何值时,△BGF是等边三角形?
(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.
利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.
分析:(1)根据直角三角形斜边上的中线等于斜边的一半就可以得出BG=FG,从而得出结论;
(2)当△BGF为等边三角形时由等边三角形的性质可以得出∠BAC=30°,根据锐角三角函数值就可以求出k的值;
(3)根据(1)(2)的结论课得出△BGF是等腰三角形和∠BAC=
1
2
∠BGF,根据∠BGF的大小分三种情况讨论就可以求出结论.
解答:解:(1)证明:∵EF⊥AC于点F,
∴∠AFE=90°
∵在Rt△AEF中,G为斜边AE的中点,
GF=
1
2
AE

在Rt△ABE中,同理可得BG=
1
2
AE

∴GF=GB,
∴△BGF为等腰三角形;

(2)当△BGF为等边三角形时,∠BGF=60°
∵GF=GB=AG,
∴∠BGE=2∠BAE,∠FGE=2∠CAE
∴∠BGF=2∠BAC,
∴∠BAC=30°,
∴∠ACB=60°,
AB
BC
=tan∠ACB=
3

∴当k=
3
时,△BGF为等边三角形;

(3)由(1)得△BGF为等腰三角形,由(2)得∠BAC=
1
2
∠BGF,
∴当△BGF为锐角三角形时,∠BGF<90°,
∴∠BAC<45°,
∴AB>BC,
∴k=
AB
BC
>1;
当△BGF为直角三角形时,∠BGF=90°,
∴∠BAC=45°
∴AB=BC,
∴k=
AB
BC
=1;
当△BGF为钝角三角形时,∠BGF>90°,
∴∠BAC>45°
∴AB<BC,
∴k=
AB
BC
<1;
∴0<k<1.
点评:本题考查了直角三角形斜边上的中线等于斜边的一半的运用,等腰三角形的判定定理的运用,外角与内角的关系的运用,分类讨论思想在实际问题的运用,解答时灵活运用直角三角形的性质及外角与内角的关系是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•南平模拟)某校组织部分学生分别到A、B两公园参见植树活动,已知道A公园每人需往返车费2元.平均每人植树5棵,到B公园每人需往返车费3元,平均每人植树3棵,且到A公园的学生比到B公园的学生5人.设到A公园的学生x人,在公园共植树y棵.
(1)求y与x之间的函数关系; 
(2)若往返车费总和不超过300元,求y的最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南平模拟)在△ABC中,D为AC的中点,将△ABD绕点D顺时针旋转α°(0<α<360)得到△DEF,连接BE、CF.
(1)如图,若△ABC为等边三角形,BE与CF有何数量关系?证明你的结论﹔
(2)若△ABC为等边三角形,当α的值为多少时,ED∥AB?
(3)若△ABC不是等边三角形时,(1)中结论是否仍然成立?若不成立,请添加一个条件,使得结论成立.(不必证明,不再添加其它的字母和线段)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南平模拟)在平面直角坐标系xOy中,矩形ABCD如图放置,边AB在x轴上,点A坐标为(1,0),点C坐标为(3,m)(m>0).连接OC交AD与E,射线OD交BC延长线于F.
(1)求点E、F的坐标﹔
(2)当x的值改变时:
①证明﹕经过O、E、F三点的抛物线的最低点一定为原点﹔
②设经过O、E、F三点的抛物线与直线CD的交点为P,求PD的长﹔
③探究﹕△ECF能否成为等腰三角形?若能,请求出△ECF 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南平)如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是(  )

查看答案和解析>>

同步练习册答案