精英家教网 > 初中数学 > 题目详情

(2013年四川绵阳14分)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:

(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;

(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,SAGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.

 

【答案】

解:(1)证明:如答图1所示,连接CO并延长,交AB于点E,

∵点O是△ABC的重心,∴CE是中线,点E是AB的中点。

∴DE是中位线。∴DE∥AC,且DE=AC。

∵DE∥AC,∴△AOC∽△DOE。

∵AD=AO+OD,

(2)答:点O是△ABC的重心。证明如下:

如答图2,作△ABC的中线CE,与AD交于点Q,

则点Q为△ABC的重心。

由(1)可知,  ,

∴点Q与点O重合(是同一个点)。

∴点O是△ABC的重心。

(3)如答图3所示,连接DG.

设SGOD=S,由(1)知,即OA=2OD,

∴SAOG=2S,SAGD=SGOD+SAGO=3S。

为简便起见,不妨设AG=1,BG=x,则SBGD=3xS.

∴SABD=SAGD+SBGD=3S+3xS=(3x+3)S。

∴SABC=2SABD=(6x+6)S。

设OH=k•OG,由SAGO=2S,得SAOH=2kS,

∴SAGH=SAGO+SAOH=(2k+2)S。

∴S四边形BCHG=SABC﹣SAGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S。

  ①。

如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE。

∵OF∥BC,∴。∴OF=CD=BC。

∵GE∥BC,∴。∴

,∴

∵OF∥GE,∴。∴,即

,代入①式得:

∴当x=时,有最大值,最大值为

【解析】(1)如答图1,作出中位线DE,证明△AOC∽△DOE,可以证明结论。

(2)如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,,而已知,故点O与点Q重合,即点O为△ABC的重心。

(3)如答图3,利用图形的面积关系,以及相似线段间的比例关系,求出的表达式,这是一个二次函数,利用二次函数的性质求出其最大值。

考点:相似形综合题,三角形的重心,三角形中位线的性质,由实际问题列函数关系式,二次函数最值。

 

练习册系列答案
相关习题

科目:初中数学 来源:2013年初中毕业升学考试(四川绵阳卷)数学(解析版) 题型:解答题

(2013年四川绵阳12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,﹣2),交x轴于A、B两点,其中A(﹣1,0),直线l:x=m(m>1)与x轴交于D.

(1)求二次函数的解析式和B的坐标;

(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);

(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(四川绵阳卷)数学(解析版) 题型:解答题

(2013年四川绵阳12分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.

(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?

(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(四川绵阳卷)数学(解析版) 题型:解答题

(2013年四川绵阳12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.

(1)若E是AB的中点,求F点的坐标;

(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(四川绵阳卷)数学(解析版) 题型:解答题

(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.

(1)判断CD与⊙O的位置关系,并证明你的结论;

(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(四川绵阳卷)数学(解析版) 题型:解答题

(2013年四川绵阳12分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:

 甲、乙射击成绩统计表

 

平均数

中位数

方差

命中10环的次数

7

    

    

0

    

    

    

1

甲、乙射击成绩折线图

(1)请补全上述图表(请直接在表中填空和补全折线图);

(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;

(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?

 

查看答案和解析>>

同步练习册答案