精英家教网 > 初中数学 > 题目详情

【题目】如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的值).

【答案】1.4m.

【解析】试题分析:根据题意知AE∥BD,可得∠AEC=∠BDC;从而得到△AEC∽△BDC,根据比例关系,计算可得AB的数值,即窗口的高度.

试题解析:由于阳光是平行光线,即AE∥BD………1

所以∠AEC=∠BDC. 又因为∠C是公共角,

所以△AEC∽△BDC,从而有.………3

AC=AB+BCDC=ECEDEC=3.9ED=2.1BC=1.2

于是有

解得 AB=1.4(m).………5

答:窗口的高度为1.4m.………6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在甲处工作的有232人,在乙处工作的有146人,如果从乙处调x人到甲处,那么甲处工作的人数是乙处工作人数的3倍,则下列方程中,正确的是(  )
A.3(323+x)=146﹣x
B.232﹣x=3(146﹣x)
C.232+x=3×146﹣x
D.232+x=3(146﹣x)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.

(1)求此抛物线的解析式;

(2)求C、D两点坐标及BCD的面积;

(3)若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明想利用自家的一块圆形铁皮做一个圆锥形的漏斗,但由于这块铁皮长时间浸泡在水中,其中有一部分已经不能用了(图中阴影部分),小明测量后发现,这块铁皮的半径为12厘米,阴影部分弓形的高为6厘米。

1)求图中阴影部分的面积;

2)小明剪掉扇形OAB后把剩下部分焊接成成一个圆锥(接缝处的损耗不计),请求出这个圆锥的底面圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

1)李老师一共调查了多少名同学?

2C类女生有 名,D类男生有 名,将下面条形统计图补充完整;

3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行 一帮一互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在﹣3、2、0、﹣1这四个数中,最小的数是( )
A.﹣3
B.﹣1
C.0
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简再求值:[(3x+y)(3x-y)-(3x-y)2]÷(-2y. 其中x=1,y=2019

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线Ly=ax2+bx+cx轴交于AB30)两点(AB的左侧),与y轴交于点C03),已知对称轴x=1

1)求抛物线L的解析式;

2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;

3)设点P是抛物线L上任一点,点Q在直线lx=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为

查看答案和解析>>

同步练习册答案