精英家教网 > 初中数学 > 题目详情

如图,为线段上一动点,分别过点,连接.已知,设

(1)用含的代数式表示的长;
(2)请问点满足什么条件时,的值最小?
(3)根据(2)中的规律和结论,请构图求出代数式的最小值.

(1);(2)三点共线时;(3)13

解析试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;
(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
(3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.
(1)
(2)当三点共线时,的值最小.
(3)如下图所示,作,过点,过点,使.连结于点的长即为代数式的最小值.

过点的延长线于点,得矩形
12.
所以,即的最小值为13.
考点:本题考查的是轴对称-最短路线问题
点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,直线y=-
34
x+3
交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AC、AB于D、E两点,连接DE.
(1)当DE=
21
时(如图1),求⊙P的半径;
(2)求线段DE长度的最大值;(如图2)
(3)当线段DE最大时(如图3),MN是⊙P的直径,点G在⊙P上,I是△MNG的内心,GI交P于F,若△MNG内切圆半径为
2
,求弦GF的长.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年广东八年级元旦学科能力竞赛数学试卷(解析版) 题型:解答题

如图,为线段上一动点,分别过点,连接.已知,设

(1)用含的代数式表示的长;

(2)请问点满足什么条件时,的值最小?

(3)根据(2)中的规律和结论,请构图求出代数式的最小值.

 

查看答案和解析>>

同步练习册答案