精英家教网 > 初中数学 > 题目详情
(2006•沈阳)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2.求:
(1)该工程队第一天拆迁的面积;
(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.
【答案】分析:主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率).则第三天拆迁了1250(1+x)2m2.即可列方程求解.
解答:解:(1)1250(1-20%)=1000(m2),
所以,该工程队第一天拆迁的面积为1000m2
(2)设该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是x,
则1000(1+x)2=1440,
解得x1=0.2=20%,x2=-2.2(舍去),
所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.
点评:可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2006•沈阳)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2006•沈阳)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:
A种材料(m2B种材料(m2所获利润(元)
每个甲种吉祥物0.30.510
每个乙种吉祥物0.60.220
该企业现有A种材料900m2,B种材料850m2,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物x个,生产这两种吉祥物所获总利润为y元.
(1)求出y(元)与x(个)之间的函数关系式,并求出自变量x的取值范围;
(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《不等式与不等式组》(07)(解析版) 题型:解答题

(2006•沈阳)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:
A种材料(m2B种材料(m2所获利润(元)
每个甲种吉祥物0.30.510
每个乙种吉祥物0.60.220
该企业现有A种材料900m2,B种材料850m2,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物x个,生产这两种吉祥物所获总利润为y元.
(1)求出y(元)与x(个)之间的函数关系式,并求出自变量x的取值范围;
(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2009年河北省中考数学模拟试卷(四)(解析版) 题型:解答题

(2006•沈阳)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间存在正比例函数关系:yA=kx,并且当投资5万元时,可获利润2万元;
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果企业同时对A、B两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?

查看答案和解析>>

同步练习册答案