【题目】如图所示为一几何体的三视图.
(1)写出这个几何体的名称:____________;
(2)在虚线框中画出它的一种表面展开图;
(3)若主视图中长方形较长一边的长为5cm,俯视图中三角形的边长为2cm,则这个几何体的侧面积是________cm2.
【答案】详见解析.
【解析】试题分析:
(1) 观察题目中给出的三视图可以发现,该几何体上下底面是全等的等边三角形,侧面为全等的矩形. 根据这些几何特征可以判定该几何体为正三棱柱.
(2) 正三棱柱的上下底面为两个全等的等边三角形,侧面为三个全等的矩形. 在表面展开图中,中间部分应该是表示侧面的三个并行排列的矩形,这些矩形较短的边长应该为底面的边长,较长的边长应该为正三棱柱的高;在位于中间的矩形的上方和下方各有一个表示上下底面的等边三角形.
(3) 结合题目中给出的条件观察第(2)小题中得到的表面展开图可知,由已知条件可以求得展开图中部的三个矩形的面积. 根据正三棱柱的几何特征可知,其侧面积可以由这三个矩形的面积之和求得.
试题解析:
(1) 根据题目中给出的三视图的特征可知,该几何体为正三棱柱. 故本小题应填写:正三棱柱.
(2) 根据正三棱柱的几何特征,画出如下的表面展开图.
(3) 本小题应填写:30. 求解过程如下.
利用第(2)小题得到的正三棱柱表面展开图(如图),计算几何体的侧面积.
由题意可知,AF=BG=DM=EN=5cm,BC=BD=CD=2cm.
根据正三棱柱的几何特征可知:四边形ABGF,四边形BDMG,四边形DENM为全等的矩形.
∵矩形BDMG的面积为:(cm2),
∴矩形ABGF与矩形DENM的面积均为10cm2.
根据正三棱柱的几何特征可知,正三棱柱的侧面积等于四边形AENF的面积,即上述三个矩形面积之和,故该正三棱柱的侧面积应为:(cm2).
科目:初中数学 来源: 题型:
【题目】阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图所示的方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).
(1)描出A、B、C、D、四点的位置,并顺次连接ABCD;
(2)四边形ABCD的面积是________.
(3)把四边形ABCD向左平移5个单位,再向上平移1个单位得到四边形A′B′C′D′,写出点A′、B′、C′、D′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小强对自己所在班级的48名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 ( )
A. B. 2 C. 3 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com