如上图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an= .
科目:初中数学 来源:2014-2015学年河南省平顶山市中考二模数学试卷(解析版) 题型:选择题
如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
查看答案和解析>>
科目:初中数学 来源:2015-2016学年江苏省八年级上学期第一次月考数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称都可以得到△.
(1)△沿x轴向右平移得到△,则平移的距离是 个单位长度;△与△关于直线对称,则对称轴是 ;
(2)连结AD,交OC于点E,求∠AEO的度数.
查看答案和解析>>
科目:初中数学 来源:2015-2016学年江苏省八年级上学期第一次月考数学试卷(解析版) 题型:选择题
下列运算结果正确的是( )
A.2a3•a4b=2a12b B.(a4)3=a7
C.(3a)3=3a3 D.a(a+1)=a2+a
查看答案和解析>>
科目:初中数学 来源:2016届辽宁省九年级上学期10月月考数学试卷(解析版) 题型:解答题
(本题12分)某百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?平均每天的销售量是多少件?
查看答案和解析>>
科目:初中数学 来源:2016届江苏省镇江市九年级上第一次月考数学试卷(解析版) 题型:填空题
如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C的切线交AB于点D.若AD=2BD,CD=1,则⊙O的半径为 .
查看答案和解析>>
科目:初中数学 来源:2016届江苏省无锡市九年级上学期第一次月考数学试卷(解析版) 题型:解答题
在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.
例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(-,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com