精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数是否总保持不变,若∠FCN的大小保持不变,请说明理由;若∠FCN的大小发生改变,请举例说明.
分析:(1)由四边形ABCD和四边形AEFG是正方形,易证得AB=AD,AE=AG,∠BAE=∠DAG,则可利用SAS证得:△ADG≌△ABE;
(2)首先作FH⊥MN于H,易证得△EFH≌△ABE,即可得FH=BE,EH=AB=BC,继而可得CH=FH=BE,即可得△CFH是等腰直角三角形,即可求得∠FCN的度数.
解答:证明:(1)∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG,
在△BAE和△DAG中,
AB=AD
∠BAE=∠DAG
AE=AG

∴△BAE≌△DAG(SAS);

(2)解:∠FCN=45°.
理由是:作FH⊥MN于H,
∵∠AEF=∠ABE=90°,
∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,
∴∠FEH=∠BAE,
在△EFH和△ABE中,
∠FEH=∠BAE
∠EHF=∠EBA=90°
EF=AE

∴△EFH≌△ABE(AAS),
∴FH=BE,EH=AB=BC,
∴CH=BE=FH,
∵∠FHC=90°,
∴∠FCH=45°.
点评:此题考查了正方形的性质、全等三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案