ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓÐ
£¨1£©Óû»Ôª·¨½â·½³ÌÊýѧ¹«Ê½+Êýѧ¹«Ê½+3=0£¬ÉèÊýѧ¹«Ê½=y£¬ÔòÔ­·½³Ì¿É»¯Îªy+Êýѧ¹«Ê½+3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+Êýѧ¹«Ê½=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬Ôòԭʽ¿ÉÒÔ»¯Îª£¨x-2£©2+Êýѧ¹«Ê½
=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®


  1. A.
    1¸ö
  2. B.
    2¸ö
  3. C.
    3¸ö
  4. D.
    4¸ö
D
·ÖÎö£º£¨1£©»»Ôª·¨½â·Öʽ·½³Ì£¬ÒªÃ÷È·Á½¸ö·ÖʽÓëyµÄ¹ØÏµ£»
£¨2£©Åä·½·¨µÄÁé»îÔËÓã¬ÒªÑ§»áÓÃÆ½·½¹ØÏµ°ÑËùÇóÓëÒÑÖªÁªÏµÆðÀ´£»
£¨3£©Åä·½·¨¡¢·Ç¸ºÊýµÄÔËÓã»
£¨4£©ÏâǶÎÊÌ⣬ҪÇó×é³ÉµÄ¼¸¸ö½ÇºÍΪ360¡ã£®
½â´ð£º£¨1£©Éè=y£¬Ôò=£¬Ô­·½³Ì¿É»¯Îªy++3=0£®ÕýÈ·£»
£¨2£©ÔËÓÃÍêȫƽ·½¹«Ê½£®ÕýÈ·£»
£¨3£©ÒªÏëÈõÈʽ³ÉΪ0£¬Ôò±ØÐëÈøùºÅÀïµÄºÍƽ·½¶¼Îª0£¬ÕýÈ·£»
£¨4£©ÒòΪËıßÐεÄÄڽǺÍΪ360¡ã£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£¬ÕýÈ·£®
¹ÊÑ¡D£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËѧÉúµÄ½â·½³ÌµÄÄÜÁ¦£¬¼°¶ÔËıßÐεÄÕÆÎÕÇé¿ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
£¨1£©Óû»Ôª·¨½â·½³Ì
x
x-1
+
2x-2
x
+3=0£¬Éè
x
x-1
=y£¬ÔòÔ­·½³Ì¿É»¯Îªy+
2
y
+3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+
y-6
=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬Ôòԭʽ¿ÉÒÔ»¯Îª£¨x-2£©2+
y-6

=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®
A¡¢1¸öB¡¢2¸öC¡¢3¸öD¡¢4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£ºÊ®Ñß ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
£¨1£©Óû»Ôª·¨½â·½³Ì
x
x-1
+
2x-2
x
+3=0£¬Éè
x
x-1
=y£¬ÔòÔ­·½³Ì¿É»¯Îªy+
2
y
+3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+
y-6
=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬Ôòԭʽ¿ÉÒÔ»¯Îª£¨x-2£©2+
y-6

=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2002ÄêÈ«¹úÖп¼ÊýѧÊÔÌâ»ã±à¡¶ËıßÐΡ·£¨01£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

£¨2002•Ê®Ñߣ©ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓУ¨ £©
£¨1£©Óû»Ôª·¨½â·½³Ì++3=0£¬Éè=y£¬ÔòÔ­·½³Ì¿É»¯Îªy++3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬Ôòԭʽ¿ÉÒÔ»¯Îª£¨x-2£©2+
=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®
A£®1¸ö
B£®2¸ö
C£®3¸ö
D£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2002ÄêÈ«¹úÖп¼ÊýѧÊÔÌâ»ã±à¡¶·Öʽ·½³Ì¡·£¨01£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

£¨2002•Ê®Ñߣ©ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓУ¨ £©
£¨1£©Óû»Ôª·¨½â·½³Ì++3=0£¬Éè=y£¬ÔòÔ­·½³Ì¿É»¯Îªy++3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬Ôòԭʽ¿ÉÒÔ»¯Îª£¨x-2£©2+
=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®
A£®1¸ö
B£®2¸ö
C£®3¸ö
D£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2002ÄêÈ«¹úÖп¼ÊýѧÊÔÌâ»ã±à¡¶ÓÐÀíÊý¡·£¨03£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

£¨2002•Ê®Ñߣ©ÏÂÁи÷ÌâÖнâÌâ·½·¨»ò˵·¨ÕýÈ·µÄ¸öÊýÓУ¨ £©
£¨1£©Óû»Ôª·¨½â·½³Ì++3=0£¬Éè=y£¬ÔòÔ­·½³Ì¿É»¯Îªy++3=0£»
£¨2£©Èôx+y=a£¬x-y=b£¬Çó2x2+2y2µÄÖµ£®ÓÃÅä·½·¨Çó£¬2x2+2y2=£¨x+y£©2+£¨x-y£©2£»
£¨3£©Èôx2-4x+4+=0£¬Çóx¡¢yµÄÖµ£®Ó÷ǸºÊýµÄºÍΪÁã½â£¬Ôòԭʽ¿ÉÒÔ»¯Îª£¨x-2£©2+
=0£»
£¨4£©ËĸöÈ«µÈµÄÈÎÒâËıßÐεĵØ×©£¬ÆÌ³ÉһƬ¿ÉÒÔ²»Áô¿Õ϶£®
A£®1¸ö
B£®2¸ö
C£®3¸ö
D£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸