精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,E为CD的中点,F为BC边上一点,且EF⊥AE,AF的延长线与DC的延长线交于点G,连接BE,与AF交于点H,则下列结论中不正确的是


  1. A.
    AF=CF+BC
  2. B.
    AE平分∠DAF
  3. C.
    tan∠CGF=数学公式
  4. D.
    BE⊥AG
D
分析:根据E为CD的中点,且EF⊥AE,利用互余关系可证△ADE∽△ECF,由相似比可知FC:CE=DE:AD=1:2,设FC=1,则CE=DE=2,AD=AB=BC=4,根据线段的长度,勾股定理,相似三角形的判定与性质,逐一判断.
解答:由E为CD的中点,设CE=DE=2,则AD=AB=BC=4,
∵EF⊥AE,
∴∠AED=90°-∠FEC=∠EFC,
又∵∠D=∠ECF=90°,
∴△ADE∽△ECF,
=,即=,解得FC=1,
A、在Rt△ABF中,BF=BC-FC=4-1=3,AB=4,由勾股定理,得AF=5,
则CF+BC=1+4=5=AF,本选项正确;
B、在Rt△ADE,Rt△CEF中,由勾股定理,得AE=2,EF=
则AE:EF=AD:DE=1:2,又∠D=∠AEF=90°,
所以,△AEF∽△ADE,∠FAE=∠DAE,即AE平分∠DAF,本选项正确;
C、∵AB∥DG,∴∠CGF=∠BAF,∴tan∠CGF=tan∠BAF==,本选项正确;
D、∵AB≠AE,BF≠EF,∴BE与AG不垂直,本选项错误;
故选D.
点评:本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,角平分线性质,锐角三角函数的定义.关键是用互余关系证明三角形相似,利用数量表示线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案