精英家教网 > 初中数学 > 题目详情

大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+n=?经过研究,这个问题的结论是数学公式,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?观察下面三个特殊的等式:
数学公式
数学公式
数学公式
将这三个等式的两边相加,可以得到数学公式
根据上述规律,请你计算:1×2+2×3+…+n(n+1)=________;1×2×3+2×3×4+…+n(n+1)(n+2)=________.

    
分析:观察已知的三个等式,得出一般性的规律,根据得出的规律表示出1×2+2×3+…+n(n+1)的每一项,抵消合并后即可得到结果;依此类推得到1×2×3=(1×2×3×4-0×1×2×3),2×3×4=(2×3×4×5-1×2×3×4),
总结出一般性规律,将各项变形后,去括号合并即可得到结果.
解答:根据阅读材料中的例子得:1×2+2×3+…+n(n+1)
=(1×2×3-0×1×2)+(2×3×4-1×2×3)+…+[n(n+1)(n+2)-(n-1)n(n+1)]
=n(n+1)(n+2);
依此类推:1×2×3=(1×2×3×4-0×1×2×3),2×3×4=(2×3×4×5-1×2×3×4),
∴1×2×3+2×3×4+…+n(n+1)(n+2)
=(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+[(n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]=n(n+1)(n+2)(n+3).
故答案为:n(n+1)(n+2);n(n+1)(n+2)(n+3)
点评:此题考查了规律型:数字的变化类,其中弄清题意,得出一般性的规律是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3…+100=?,经过研究,这个问题的一般性结论是1+2+3…+n=
1
2
n(n+1)
,其中n是正整数,现在我们来研究一个类似的问题:1×2+2×3+…+n(n+1)=?
观察下面三个特殊的等式:
1×2=
1
3
(1×2×3-0×1×2)

2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)

将这三个等式的两边相加,可以得到1×2+2×3+3×4=
1
3
×3×4×5=20
读完这段材料,请尝试求(要求写出规律):
(1)1×2+2×3+3×4+4×5=?
(2)1×2+2×3+…+100×101=?
(3)1×2+2×3+…+n(n+1)=?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+4+5+…+n=
1
2
n(n+1)
,其中n是正整数.现在我们来研究一个类似的问题:
观察下面三个特殊的等式:
1×2+2×3+3×4+…+n(n+1)=
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
将这三个等式的两边分别相加,可以得到1×+2×3+3×4=
1
3
×3×4×5=20
读完这段材料,请你思考后回答:
(1)1×2+2×3+3×4+…+100×101=
 

(2)1×2+2×3+3×4+…+n(n+1)=
 

(3)1×2×3+2×3×4+…+n(n+1)(n+2)=
 

(只需写出结果,不必写中间的过程)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=
1
2
n(n+1)
,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)

读完这段材料,请你思考后回答:
(1)5×6=
 
=
 

将前面两个等式的两边相加,可以得到
1×2+2×3=
1
3
×2×3×4=8
将这三个等式的两边相加,可以得到
1×2+2×3+3×4=
1
3
×3×4×5=20

读完这段材料,请你思考后回答:
(2)1×2+2×3+…+100×101=
 
=
 

(3)1×2+2×3+…+n(n+1)=
 
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=
1
2
n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式:
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),
3×4=
1
3
(3×4×5-2×3×4),
将这三个等式的两边相加,可以得到:
1×2+2×3+3×4=
1
3
(1×2×3-0×1×2+2×3×4-1×2×3
+3×4×5-2×3×4)
=
1
3
×3×4×5
=20
读完这段材料,请你思考后回答:
(1)1×2+2×3+…+7×8=
168
168

(2)1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)

(3)若1×2+2×3+…+n(n+1)=
1
3
×9×10×11
,求n边形的内角和度数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?我们可以先从简单的几个数开始,计算、观察,寻求规律,得出一般性的结论.1=
1×2
2
=1
1+2=
2×3
2
=3,1+2+3=
3×4
2
=6,1+2+3+4=
4×5
2
=10
;…,
(1)计算:1+2+3+…+100=
5050
5050

(2)计算:41+42+43+…+100=
5050
5050
-
820
820
=
4230
4230

查看答案和解析>>

同步练习册答案