精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的边长是4,将此正方形置于平面直角坐标系xoy中,使AB在x轴的正半轴上,A点精英家教网的坐标是(1,0)
(1)经过点C的直线y=
4
3
x-
8
3
与x轴交于点E,求四边形AECD的面积;
(2)若直线l经过点E且将正方形ABCD分成面积相等的两部分,求直线l的方程,并在坐标系中画出直线l.
分析:(1)由题意知边长已经告诉,易求四边形的面积;
(2)由第一问求出E点的坐标,设出F点,根据直线l经过点E且将正方形ABCD分成面积相等的两部分,其实是两个直角梯形,根据梯形面积公式,可求出F点坐标,从而解出直线l的解析式.
解答:解:(1)由已知条件正方形ABCD的边长是4,
∴四边形AECD的面积为:(4+1)×4÷2=10;

(2)由第一问知直线y=
4
3
x-
8
3
与x轴交于点E,
∴E(2,0),
设F(m,4),
直线l经过点E且将正方形ABCD分成面积相等的两部分,由图知是两个直角梯形,
∴S梯形AEFD=S梯形EBCF=精英家教网
1
2
(DF+AE)•AD=
1
2
(FC+EB)•CB,
∴m=4,
∵F(4,4),E(2,0),
∴直线l的解析式为:y=2x-4,如右图:
点评:此题将一次函数和正方形结合起来,考查一次函数的性质和坐标转换,还考查梯形的面积公式,看似复杂其实简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案