精英家教网 > 初中数学 > 题目详情
根据tan30°=构造△ABC,使∠A=30°,AB=2,BC=1,AC=,再延长CA到点D,使AB=AD,连接BD,则tan15°==2-,同样根据tan45°=1,模仿前面的做法求出tan22.5°的值.
【答案】分析:利用正切值等于对边比邻边,构造直角三角形求解.
解答:解:作∠A=45°,AB=,AC=BC=1,
延长CA至点D,使AD=AB,连接BD.
则tanD=tan22.5°==-1.
点评:本题是信息题,由题中给出求tan15°的方法,构造出能求tan22.5°的值的直角三角形求解,关键构造出△BAD是等腰三角形,而∠BAC为45°,又为△BAD的外角,所以∠D=22.5,再由正切的定义求出tan22.5°的值.
练习册系列答案
相关习题

科目:初中数学 来源:第1章《解直角三角形》中考题集(11):1.1 锐角三角函数(解析版) 题型:解答题

阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______;
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______.

查看答案和解析>>

科目:初中数学 来源:第25章《解直角三角形》中考题集(11):25.2 锐角的三角函数值(解析版) 题型:解答题

阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______;
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年九年级(上)期末数学全册内容检测试卷(解析版) 题型:解答题

阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______;
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2008•镇江)阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=______,如果min{2,2x+2,4-2x}=2,则x的取值范围为______≤x≤______;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么______(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=______;
(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为______.

查看答案和解析>>

同步练习册答案