精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D,E,F分别是边AB,BC,AC的中点,连接DE、DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点D停止;点Q沿BC的方向运动,当点P停止运动时,点Q也停止运动.在运动过程中,过点Q作BC的垂线交AB于点M,以点P,M,Q为顶点作平行四边形PMQN.设平行四边形边形PMQN与矩形FDEC重叠部分的面积为y(cm2)(这里规定线段是面积为0的几何图形),点P运动的时间为x(s)

(1)当点P运动到点F时,CQ=   cm;
(2)在点P从点F运动到点D的过程中,某一时刻,点P落在MQ上,求此时BQ的长度;
(3)当点P在线段FD上运动时,求y与x之间的函数关系式.

(1)5。
(2)(cm)。
(3)

解析试题分析:(1)当点P运动到点F时,求出AF=FC=3cm,BQ=AF=3cm,即可求出答案。
(2)根据在点P从点F运动到点D的过程中,点P落在MQ上得出方程t+t﹣3=8,求出即可。
(3)求出DE=AC=3,DF=BC=4,证△MBQ∽△ABC,求出MQ=,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,根据y=PN•PD代入求出即可;②当4≤x<时,重叠部分为矩形,根据图形得出;③当≤x≤7时,重叠部分图形为矩形,根据图形得出,求出即可。 
解:(1)当点P运动到点F时,
∵F为AC的中点,AC=6cm,∴AF=FC=3cm。
∵P和Q的运动速度都是1cm/s,∴BQ=AF=3cm。
∴CQ=8cm﹣3cm=5cm。
(2)设在点P从点F运动到点D的过程中,点P落在MQ上,如图,

则t+t﹣3=8,∴t=
∴BQ的长度为×1=(cm)。
(3)∵D、E、F分别是AB、BC、AC的中点,
∴DE=AC=×6=3,DF=BC=×8=4。
∵MQ⊥BC,∴∠BQM=∠C=90°。
∵∠QBM=∠CBA,∴△MBQ∽△ABC。
,即。∴MQ=
分为三种情况讨论:
①当3≤x<4时,重叠部分图形为平行四边形,如图,

y=PN•PD=(7﹣x),

②当4≤x<时,重叠部分为矩形,如图,


即y=﹣6x+33。
③当≤x≤7时,重叠部分图形为矩形,如图,


即y=6x﹣33。
综上所述,当点P在线段FD上运动时, y与x之间的函数关系式为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某花卉的保存温度t满足(18±2)℃,则该花卉适宜保存的温度范围是(  )
A、16℃≤t≤18℃B、16℃≤t≤20℃C、16℃≤t≤22℃D、18℃≤t≤18℃

查看答案和解析>>

科目:初中数学 来源: 题型:

数轴上表示-4的点到原点的距离为(  )
A、4
B、-4
C、
1
4
D、-
1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

|-
1
2
|等于(  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

下列四个数中,最小的数是(  )
A、5
B、-5
C、0
D、-
1
5

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是     

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有  人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?

查看答案和解析>>

同步练习册答案