精英家教网 > 初中数学 > 题目详情
将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为   
【答案】分析:将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,则小正方体的棱长是2,表面积是2×2×6=24,并且恰有2面涂有颜色的小正方体共有24个,则这样的小正方体表面积的和是24×24=576.
解答:解:根据以上分析:小正方体的棱长是2,表面积是2×2×6=24,恰有2面涂有颜色的小正方体共有24个.则这样的小正方体表面积的和是24×24=576.
故答案为576.
点评:解决本题的关键是能够分析出恰有2面涂有颜色的小正方体的个数,本题主要训练了空间想象能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为
576

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为______.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(邱海燕)(解析版) 题型:填空题

将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为   

查看答案和解析>>

科目:初中数学 来源:2007年浙江省温州市乐清中学自主招生考试数学试卷(解析版) 题型:填空题

将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为   

查看答案和解析>>

同步练习册答案