精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
kx
的图象与一次函数y=-kx+m的图象相交于点A(-2,1).
(1)分别求出这两个函数的解析式;
(2)若一次函数与反比例函数的另一交点为B,且纵坐标为4,求△ABO的面积;
(3)是否存在这样的x值,既能使一次函数的值大于0,又能使反比例函数的值大于0?若存在,求出x的取值范围;若不存在,请说明理由.
分析:(1)先把A(-2,1)代入y=
k
x
得求出k,然后把A(-2,1)和k=-2代入y=-kx+m可求出m;
(2)先确定C点坐标,然后利用S△OAB=S△BOC-S△OAC进行计算;
(3)观察函数图象得到一次函数的值大于0,则x>-
5
2
;反比例函数的值大于0,则x<0,于是可得到满足条件的x的范围.
解答:解:(1)把A(-2,1)代入y=
k
x
得k=-2×1=-2,
所以反比例函数解析式为y=-
2
x

把A(-2,1)和k=-2代入y=-kx+m得-(-2)×(-2)+m=1,
解得m=5,
所以一次函数的解析式为y=2x+5;

(2)对于y=2x+5,令y=0,则2x+5=0,解得x=-
5
2

所以C点坐标为(-
5
2
,0),
所以S△OAB=S△BOC-S△OAC=
1
2
×4×
5
2
-
1
2
×1×
5
2
=
15
4


(3)存在.理由如下:
一次函数的值大于0,则x>-
5
2

反比例函数的值大于0,则x<0,
所以x的范围为-
5
2
<x<0.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两个函数的解析式.也考查了三角形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案