精英家教网 > 初中数学 > 题目详情
(1999•烟台)如图,△ABC是等边三角形,⊙O与BC相切于点C,交CA的延长线于点D,交△ABC的外接圆于点K,直线AK交⊙O于点E,交CB的延长线于点F.
(1)求∠EDC的度数;
(2)如果A是EF的中点,请判断K是否是的中点,并证明你的结论.

【答案】分析:(1)此题要通过构造相等的圆周角来求解;连接KC,在小圆中,由圆周角定理知∠AKC=∠ABC=60°,在⊙O中,∠AKC=∠EDC=60°,由此得解.
(2)若K是弧AB的中点,需要证得∠ACK=∠BCK=30°,连接CE;由于FC切⊙O于C,则∠FCD=∠CED=60°,那么△CDE也是等边三角形,那么∠DCE=∠BAC=60°,根据内错角相等两直线平行,可证得AB∥CE,而A是EF的中点,则B是FC的中点,即FB=BC=AB,由此可得∠F=∠BAF=∠ABC=30°,那么∠BCD=∠BAF=30°,即可得解.
解答:解:(1)连接KC;(1分)
∵∠AKC=∠ABC,∠AKC=∠EDC,
∴∠ABC=∠EDC;(3分)
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠EDC=60°.(4分)

(2)连接CE,(1分)
∵FC切⊙O于C,
∴∠ACF=∠DEC;
∵△ABC是等边三角形,
∴∠ACF=∠BAC=60°,AB=BC,
∴∠DEC=60°,
∴∠DCE=60°,
∴∠DCE=∠BAC,
∴AB∥CE;(4分)
∵FA=AE,
∴FB=BC.(5分)
∴AB=FB,
∴∠F=∠FAB=∠ABC=30°;(7分)
∵∠ACB=60°,
∴∠ACK=∠BCK=30°,
∴K是的中点.(9分)
点评:考查了等边三角形的性质,切线的性质等知识点的运用.此题是一个大综合题,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《三角形》(03)(解析版) 题型:解答题

(1999•烟台)如图,四边形AOBC是矩形,点A的坐标是(0,3),点B的坐标是(4,0),动点P,Q同时从点O出发,P沿折线OACB的方向运动,Q沿折线OBCA的方向运动.
(1)若P的运动速度是Q的3倍,点P运动到AC边上,连接PQ交OC于点R,且OR=2,求直线PQ的函数关系式;
(2)若P的运动速度是每秒个单位长度,Q的运动速度是个单位长度,运动到相遇时停止,设△OPQ的面积为S,运动时间为t秒,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(01)(解析版) 题型:解答题

(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.

查看答案和解析>>

科目:初中数学 来源:1999年山东省烟台市中考数学试卷(解析版) 题型:解答题

(1999•烟台)如图,四边形AOBC是矩形,点A的坐标是(0,3),点B的坐标是(4,0),动点P,Q同时从点O出发,P沿折线OACB的方向运动,Q沿折线OBCA的方向运动.
(1)若P的运动速度是Q的3倍,点P运动到AC边上,连接PQ交OC于点R,且OR=2,求直线PQ的函数关系式;
(2)若P的运动速度是每秒个单位长度,Q的运动速度是个单位长度,运动到相遇时停止,设△OPQ的面积为S,运动时间为t秒,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:1999年山东省烟台市中考数学试卷(解析版) 题型:解答题

(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.

查看答案和解析>>

同步练习册答案