精英家教网 > 初中数学 > 题目详情

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=数学公式时,x的值.

解:当P在AB上,即0<x≤2时,如图1,y=AP×AD=×x×2=x;
当P在BC上,即2<x≤4时,如图2,y=S正方形ABCD-S△ADE-S△CEP-S△ABP
=2×2-×2×1-×1×(4-x)-×2×(x-2),
=-x+3;
当P在CE上,即4<x≤5时,如图3,y=EP×AD=×(6-1-x)×2=-x+5;

时,=x或=-x+3或=-x+5,
解得:
分析:分为三种情况:当P在AB上,根据y=AP×AD,代入求出即可;当P在BC上,根据y=S正方形ABCD-S△ADE-S△CEP-S△ABP,根据三角形的面积公式代入求出即可;当P在CE上,根据y=EP×AD,代入求出即可;把y=代入解析式,求出x即可.
点评:本题考查了分段函数,三角形的面积公式,正方形的面积等知识点的应用,关键是根据题意求出所有情况,注意:①要分类讨论,②利用规则图形的面积求不规则图形的面积的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD的边长为6,以D为圆心,DA为半径在正方形内作弧AC,E是AB边上动点(与点A、B不重精英家教网合),过点E作弧AC的切线,交BC于点F,G为切点,⊙O是△EBF的内切圆,分别切EB、BF、FE于点P、J、H
(1)求证:△ADE∽△PEO;
(2)设AE=x,⊙O的半径为y,求y关于x的解析式,并写出定义域;
(3)当⊙O的半径为1时,求CF的长;
(4)当点E在移动时,图中哪些线段与线段EP始终保持相等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•同安区质检)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)求证:△ADE≌△CDF;
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)如图,已知正方形ABCD的边长为28,动点P从A开始在线段AD上以每秒3个单位长度的速度向点D运动(点P到达点D时终止运动),动直线EF从AD开始以每秒1个单位长度的速度向下平行移动(即EF∥AD),并且分别与DC、AC交于E、F两点,连接FP,设动点P与动直线EF同时出发,运动时间为t 秒.
(1)t为何值时,梯形DPFE的面积最大?最大面积是多少?
(2)当梯形DPFE的面积等于△APF的面积时,求线段PF的长.
(3)△DPF能否为一个等腰三角形?若能,试求出所有的t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为8cm,点E、F分别在边BC、CD上,∠EAF=45°.当EF=8cm时,△AEF的面积是
32
32
cm2;当EF=7cm时,△EFC的面积是
8
8
cm2

查看答案和解析>>

同步练习册答案