精英家教网 > 初中数学 > 题目详情

如图,已知在四边形ABCD中,AC与BD相交于点O,AB⊥AC,CD⊥BD.
(1)求证:△AOD∽△BOC;
(2)若数学公式,S△AOD=4,求S△BOC的值.

(1)证明:∵AB⊥AC,CD⊥BD,
∴∠BAC=∠BDC=90°,
又∵∠AOB=∠DOC,
∴△AOB∽△DOC,


又∵∠AOD=∠BOC,
∴△AOD∽△BOC;

(2)∵∠BAC=90°,

∵△AOD∽△BOC,

∵S△AOD=4,

∴S△BOC=9.
分析:(1)由AB⊥AC,CD⊥BD,可得∠BAC=∠BDC=90°,又由对顶角相等,根据有两角对应相等的三角形相似,易得△AOB∽△DOC,即可得到比例线段,再由∠AOD=∠BOC,即可证得△AOD∽△BOC;
(2)由,可得,又由相似三角形的面积比等于相似比的平方,可求得S△BOC的值.
点评:此题考查了相似三角形的判定与性质,以及三角函数的定义.解题时要注意相似三角形的面积比等于相似比的平方,有两角对应相等的三角形相似与有两边对应成比例且夹角相等三角形相似的性质的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,AD=AB,CD=CB,则∠D=∠B,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,∠C=90°,AB=AD=10,cos∠ABD=
25
,∠BDC=60°.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在四边形ABCD中,AC与BD相交于点O,AB⊥AC,CD⊥BD.
(1)求证:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区一模)如图,已知在四边形ABCD中,AC⊥AB,BD⊥CD,AC与BD相交于点E,S△AED=9,S△BEC=25.
(1)求证:∠DAC=∠CBD;
(2)求cos∠AEB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在四边形ABCD中,∠ABC=2∠ADC=2a,点E、F分别在CB、CD的延长线上,且EB=AB+AD,∠AEB=∠FAD,猜想线段AE、AF的数量关系,并证明你的猜想.

查看答案和解析>>

同步练习册答案