下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数
与方差
:
| 甲 | 乙 | 丙 | 丁 | |
| 平均数 | 561 | 560 | 561 | 560 |
| 方差 | 3.5 | 3.5 | 15.5 | 16.5 |
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择
A. 甲 B.乙 C.丙 D.丁
科目:初中数学 来源: 题型:
在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图4①;将AB折成正三角形,使点A、B重合于点P,如图4②;建立平面直角坐标系,平移此三角形,使它关于
轴对称,且点P的坐标为(0,2),PM的延长线与
轴交于点N(n,0),如图4③,当m=
时,n的值为
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC
的延长线于点D,点F为BC的中点,连接EF
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)
(1)这次调查获取的样本数据的众数是 ;
(2)这次调查获取的样本数据的中位数是 ;
(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
(1)如图1,当α=90°时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。”乙说:“两项都参加的人数小于5人。”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )
A.若甲对,则乙对 B.若乙对,则甲对 C.若乙错,则甲错 D.若甲粗,则乙对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com