精英家教网 > 初中数学 > 题目详情
(2006•临沂)在某城市,80%的家庭年收入不少于2.5万元,下面一定不少于2.5万元的是( )
A.年收入的平均数
B.年收入的众数
C.年收入的中位数
D.年收入的平均数和众数
【答案】分析:根据中位数的求法及意义可知:若80%的家庭年收入不少于2.5万元,年收入的中位数一定不少于2.5万元.
解答:解:由于中位数体现数据的中间值的大小,由题意知,有80%的家庭年收入不少于2.5万元,故年收入的中位数一定不少于2.5万元.
故选C.
点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省汕头市龙湖区中考数学模拟试卷(解析版) 题型:解答题

(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年山东省临沂市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年山东省临沂市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•临沂)如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(0,2),且其面积为8.
(1)求此抛物线的解析式;
(2)如图2,若P点为抛物线上不同于A的一点,连接PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R.
①求证:PB=PS;
②判断△SBR的形状;
③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似?若存在,请找出M点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案