精英家教网 > 初中数学 > 题目详情
如果
b
a
=
3
2
且a≠3,b≠2,则
a-b+1
a+b-5
的值为(  )
A、0
B、
1
5
C、-
1
5
D、无法确定
分析:根据比例的性质,由
b
a
=
3
2
得出,
a-b
a+b
=
2-3
2+3
=
-1
5
;所以,可得出
a-b+1
a+b-5
=-
1
5
解答:解:根据比例的性质,
b
a
=
3
2
得,
a-b
a+b
=
2-3
2+3
=
-1
5

所以,
a-b+1
a+b-5
=-
1
5

故选C.
点评:本题考查了比例的性质,本题用到的比例的合分比性质,学生应熟练掌握比例的几个性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读,再回答问题:
如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-
b
a
,x1x2=
c
a
.例如x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-
a
b
=
-1
2
=
1
2
,x1x2=
c
a
=
-1
2
=-
1
2

(1)若x1,x2是方程2x2+x-3=0的两个根,则x1+x2=
-
1
2
-
1
2
,x1x2
-
3
2
-
3
2

(2)若x1,x2是方程x2+x-3=0的两个根,求
x2
x1
+
x1
x2
的值;
(3)若x1,x2是方程x2+(4k+1)x+2k-1=0的两个实数根,且(x1-2)(x2-2)=2k-3,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)
特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.
归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)
特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.
归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.

查看答案和解析>>

同步练习册答案