精英家教网 > 初中数学 > 题目详情

若将一个半径为5,表面积为15π的扇形卷成一个圆锥体,则此圆锥的高为________.

4
分析:应先求得扇形的弧长,进而除以2π求得围成圆锥的底面半径,利用勾股定理即可求得圆锥的高.
解答:∵是半径为5,表面积为15π的扇形,
∴弧长l=2×15π÷5=6π,
∴圆锥的底面半径为:6π÷2π=3,
∴圆锥的高==4.
点评:用到的知识点为:圆锥的弧长等于底面周长;圆锥的高,母线长,底面半径组成直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:精英家教网
 d、a、r之间关系  公共点的个数
 d>a+r

 d=a+r
 
 a≤d<a+r  
 d=a-r  
 d<a-r  
所以,当r<a时,⊙O与正方形的公共点的个数可能有
 
个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:精英家教网
d、a、r之间关系  公共点的个数
 d>a+r
 d=a+r  
 a≤d<a+r  
 d<a  
所以,当r=a时,⊙O与正方形的公共点个数可能有
 
个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=
5
4
a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有
 
个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).
精英家教网

查看答案和解析>>

科目:初中数学 来源:第35章《圆(二)》中考题集(04):35.2 直线与圆的位置关系(解析版) 题型:解答题

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
 d、a、r之间关系 公共点的个数
 d>a+r

 d=a+r
 
 a≤d<a+r 
 d=a-r 
 d<a-r 
所以,当r<a时,⊙O与正方形的公共点的个数可能有______个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 公共点的个数
 d>a+r
 d=a+r 
 a≤d<a+r 
 d<a 
所以,当r=a时,⊙O与正方形的公共点个数可能有______个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有______个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).


查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(37):3.2 点、直线与圆的位置关系,圆的切线(解析版) 题型:解答题

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
 d、a、r之间关系 公共点的个数
 d>a+r

 d=a+r
 
 a≤d<a+r 
 d=a-r 
 d<a-r 
所以,当r<a时,⊙O与正方形的公共点的个数可能有______个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 公共点的个数
 d>a+r
 d=a+r 
 a≤d<a+r 
 d<a 
所以,当r=a时,⊙O与正方形的公共点个数可能有______个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有______个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).


查看答案和解析>>

科目:初中数学 来源:第26章《圆》中考题集(48):26.5 直线与圆的位置关系(解析版) 题型:解答题

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
 d、a、r之间关系 公共点的个数
 d>a+r

 d=a+r
 
 a≤d<a+r 
 d=a-r 
 d<a-r 
所以,当r<a时,⊙O与正方形的公共点的个数可能有______个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 公共点的个数
 d>a+r
 d=a+r 
 a≤d<a+r 
 d<a 
所以,当r=a时,⊙O与正方形的公共点个数可能有______个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有______个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).


查看答案和解析>>

科目:初中数学 来源:第5章《中心对称图形(二)》中考题集(35):5.5 直线与圆的位置关系(解析版) 题型:解答题

设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
 d、a、r之间关系 公共点的个数
 d>a+r

 d=a+r
 
 a≤d<a+r 
 d=a-r 
 d<a-r 
所以,当r<a时,⊙O与正方形的公共点的个数可能有______个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
d、a、r之间关系 公共点的个数
 d>a+r
 d=a+r 
 a≤d<a+r 
 d<a 
所以,当r=a时,⊙O与正方形的公共点个数可能有______个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a;
(4)就r>a的情形,请你仿照“当…时,⊙O与正方形的公共点个数可能有______个”的形式,至少给出一个关于“⊙O与正方形的公共点个数”的正确结论.
(注:第(4)小题若多给出一个正确结论,则可多得2分,但本大题得分总和不得超过12分).


查看答案和解析>>

同步练习册答案