精英家教网 > 初中数学 > 题目详情
已知等腰Rt△ABC,AC=BC=2,D为射线CB上一动点,经过点A的⊙O与BC相切于点D,交直线AC于点E.
(1)如图1,当点D在斜边AB上时,求⊙O的半径;
(2)如图2,点D在线段BC上,使四边形AODE为菱形时,求CD的长.
分析:(1)连接OD,设圆O的半径长为a,求出AB,求出∠B=∠BOD=45°,根据勾股定理得出方程,求出方程的解即可;
(2)得出等边三角形AOE和EOD,求出∠EDC=30°,根据DE=4-2
2
求出CE,解直角三角形求出即可.
解答:(1)解:连接OD,
∵⊙O切BC于D,
∴∠ODB=90°,
设圆O的半径长为a,
∵△ABC为等腰直角三角形,∠C=90°,AC=BC=2,
∴OD∥AC,AB=
22+22
=2
2
,∠B=∠CAB=45°
∴OB=2
2
-a,∠DOB=∠B=45°
∴2a2=(2√2-a)2
 解得:a1=4-2
2
,a2=-2
2
-4,
∵a>0,
∴a=4-2
2

即⊙O半径长为4-2
2


(2)解:连EO,
∵四边形OAED为菱形,
∴AE=AO,
∵AO=EO,
∴△AEO为等边三角形,
∴∠AEO=60°
同理△EOD是等边三角形,
∴∠OED=∠ODE=60°,
∵∠ODC=90°,
∴∠EDC=30°,
∵∠C=90°,
∴ED=2EC,
∵ED=4-2
2

∴CE=2-
2

∴CD=
3
CE=2
3
-
6
点评:本题考查了解直角三角形,切线的性质,等腰直角三角形,等边三角形的性质和判定,勾股定理,含30度角的直角三角形性质的应用,主要考查学生综合运行性质进行推理和计算的能力,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•深圳二模)如图,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,点P是线段AB上的点,点Q是线段BC延长线上的点,且AP=CQ,PQ与直线AC相交于点D.作PE⊥AC于点E,则线段DE的长度(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•拱墅区二模)如图,已知等腰Rt△ABC中,∠ACB=90°,点D为等腰Rt△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)连接BE,设DC=a,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰Rt△ABC和等腰Rt△EDF,其中D、G分别为斜边AB、EF的中点,连CE,又M为BC中点,N为CE的中点,连MN、MG
(1)如图1,当DE恰好过M点时,求证:∠NMG=45°,且MG=
2
MN;
(2)如图2,当等腰Rt△EDF绕D点旋转一定的度数时,第(1)问中的结论是否仍成立,并证明;
(3)如图3,连BF,已知P为BF的中点,连CF与PN,若CF=6,直接写出
PN
CF
=
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,
(1)求证:AD=CD;
(2)求AE的长.

查看答案和解析>>

同步练习册答案